OpenC++ 2.5 Reference Manual

Shigeru Chiba

Institute of Information Science and Electronics
University of Tsukuba
Email: chiba@is.tsukuba.ac.jp

Copyright(©1997-99 by Shigeru Chiba. All Rights Researved.

1 Overview

OpenC++ is a toolkit for C++ translators and analyzers. It was designed to enable
the users to develop those tools without concerning tedious parts of the devel-
opment such as the parser and the type system. There are a number of tools that
OpenC++ facilitates the development of. For example, the users can easily develop
a C++ translator for implementing a language extension to C++ or for optimizing
the compilation of their class libraries. Moreover, OpenC++ is useful to develop

a source-code analyzer such as one for producing the class-inheritance graph of a
C++ program.

The programmer who want to use OpenC++ writeseda-leveprogram, which
specifies how to translate or analyze a C++ program. It is written in C++ and de-
fines a small number of classes. Then the meta-level program is compiled by the
OpenC++ compiler and (dynamically or statically) linked to the compiler itself as
a compiler plug-in. The resulting compiler translates or analyzes a source pro-
gram (it is called &ase-leveprogram for distinction) as the meta-level program
specifies. See Figure 1.

meta-level
program .cc

‘OpenC++ compiler‘ ‘ C++ compiler ‘ » .SO
l dynamic load

base-level - .

Figure 1: Overview (The meta-level program is dynamically linked)

The meta-level program is written according to the programming interface
called the OpenC++ MOP (Metaobject Protocol.) Through this interface, the inter-
nal structure of the compiler is exposed to the programmers with object-oriented
abstraction.

The base-level program is first preprocessed by the C++ preprocessor, and then
divided into small pieces of code. These pieces of code are translated by class
metaobjects and assembled again into a complete C++ program. In the OpenC++
MOP, the pieces of code is representedPiee metaobjects in the form of parse
tree (that is, linked list). Although the metaobjects are identical to regular C++
objects, they exist in the compiler and represent a meta aspect bateelevel
program. This is why they are not simply callebjectsbut metaobjects

2

The class metaobject is selected according to the static type of the translated
piece of code. For example, if the piece of code is a member call Poirat
object:

pO->move(3, 4)

Then it is translated by the class metaobjectfomt (the type ofp.) Itis given
to the class metaobject in the form of parse tree and translated, for example, into
this;

(++counter, pO->move(3, 4))

This translation is similar to the one by Lisp macros, but it is type-oriented. The
translation by the metaobjects is applied not only a member call but also other
kinds of code involved with the C++ class system, such as data member access and
class declaration.

The programmer who wants to customize the source-to-source translation writes
a meta-level program to define a new class metaobject. This class metaobject is
associated with a particular class in the base-level program and controls the trans-
lation of the code involved with the class. Thus the translation is applied only to
the particular class and the rest of the code involved with the other classes remains
asis

The class metaobject can use other aspects of the base-level program during
the source-code translation. In addition to the parse tree, it can access the seman-
tic information such as static types and class definitions. These various aspects of
the program facilitates the implementation of complex source-code translation and
analysis. Furthermore, the OpenC++ MOP enables syntax extensions so that the
base-level programmers can write annotations to help the translation or the analy-
sis.

The meta architecture of OpenC++ might look very different from the archi-
tecture of other reflective languages. However, note that the class metaobject still
controls the behavior of the base-level objects, which are instances of the class.
The uniqueness of the OpenC++ MOP is only that the class metaobject does not
interpret the base-level program in the customized way, but rather translates that
program at compile time so that the customized behavior is implemented. The
readers will find that, as in other reflective languages, the class metaobject has a
member function for every basic action of the object, such as member calls, data
reading/writing, object creation, and so forth, for customizing the object behavior.

2 Base-Level Language (OpenC++)

This section addresses the language specification of OpenC++. OpenC++ is iden-
tical to C++ except two extensions. To connect a base-level program and a meta-
level program, OpenC++ introduces a new kind of declaration into C++. Also, new
extended syntax is available in OpenC++ if the syntax is defined by the meta-level
program.

2.1 Base-level Connection to the MOP

OpenC++ provides a new syntax for metaclass declaration. This declaration form
is the only connection between the base level and the meta level. Although the
default metaclass i€lass , programmers can change it by using this declaration
form:

e metaclass metaclass-name [class-namé (meta-argumenty || ; ?

This declares the metaclass for a class. It must appear before the class is defined.
If the class name is not specified, this declaration means nothing except that the
metaclass is loaded into the compilereta-argumentis a sequence of identifiers,
type names, literals, and C++ expressions surround€ggl byThe elements must
be separated by commas. The identifiers appearinggita-argumentdo not have
to be declared in advance. What should be placededa-argumentis specified
by the metaclass.
The code shown below is an example of metaclass declaration:

metaclass PersistentClass Point;
class Point {
public:

int X, v;

The metaclass foPoint is PersistentClass . This syntax was chosen so
that it looks like a variable declaration such as:

class Point pO;

The former declaration defines a class metaolijeint as an instance of meta-
classPersistentClass , and the latter defines an objgxl as an instance of
classPoint .

[] means an optional field.

2.2 Syntax Extensions

The extended syntax described here is effective if programmers define it by the
MOP. By default, it causes a syntax error. To make it available, the programmers
must register a new keyword, which is used in one of the following forms:

e Modifier keyword| (function-argument}]

A keyword can be registered to lead a modifier. It may appear in front of class dec-
larations, thenew operator, or function arguments. For example, these statements
are valid:

distribute class Dictionary { ... };
Point* p = remote(athos) new Point;
void append(ref int i, int j);

Here,distribute , remote , andref are registered keywords.
Also, a modifier can be placed in front of a member declaration. For example,

class Point {
public:
sync int x, y;

The keywordsync is a modifier.

e Access Specifier keyword| (function-argument} | :

Programmers may define a keyword as a member-access specifier. It appears at
the same place that the built-in access specifier sughilalic can appears. For
example, ifafter is a user-defined keyword, then programmers may write:

class Window {
public:
void Move();
after:
void Move() { ... } /I after method

e While-style Statement

pointer-> keyword(expressio){ statement$
object. keyword(expression{ statement$
class-name: keyword(expression{ statement$

A user-defined keyword may lead something like thigile statement. In the

5

grammar, that is not a statement but an expression. It can appear at any place
where C++ expressions appeaxpressiors any C++ expression. It may be empty

or separated by commas like function-call arguments. Here is an example of the
while-style statement:

Matrix m2;
m2.forall(e){

e = 0;
}

A user-defined keyword can also lead other styles of statements.

e For-style Statement

pointer-> keyword(expr; expr; expr)}{ statement$
object. keyword(expr; expr; expr){ statement$
class-name: keyword(expr; expr; expr){ statement$

The for-style statement takes three expressions likéothestatement. Except that,
it is the same as the while-style statement.

e Closure Statement

pointer-> keyword(arg-declaration-list){ statement$
object. keyword(arg-declaration-lisf)y{ statement$
class-name: keyword(arg-declaration-list){ statement$

The closure statement takes an argument declaration list instead of an expression.
That is the only difference from the while-style statement. For example, program-
mers may write something like this:

ButtonWidget b;

b.press(int x, int y}{
printf("pressed at (%d, %d)\n", X, Y);

This might be translated into this:

void callback(int x, int yX{
printf("pressed at (%d, %d)\n", X, V);

ButtohWidget b;
b.press(callback); Il register a callback function

2.3 Loosened Grammar

Besides extended syntax, OpenC++'s grammar is somewhat loosened as compared
with C++'s grammar. For example, the next code is semantically wrong in C++:

Point p=1{1,3, 5%}

The C++ compiler will report thgt cannot be initialized by 1, 3, 5 } . Such

an aggregate can be used only to initialize an array. The OpenC++ compiler simply
accepts such a semantically-wrong code. It ignores semantical correctness expect-
ing that the code will be translated into valid C++ code.

3 Metaobject Protocol (MOP)

At the meta level, the (base-level) programs are represented by objects of a few pre-
defined classes (and their subclasses that programmers define). These objects are
calledmetaobjectbecause they ametarepresentation of the programs. Source-
to-source translation from OpenC++ to C++ is implemented by manipulating those
metaobjects.

The following several sections show details of such metaobjects. They reflect
various aspects of programs that are not accessible in C++. Although most of
metaobjects provide means of introspection, some metaobjects represent a behav-
ioral aspect of the program and enables to control source-to-source translation of
the program. Here is the list of metaobjects:

e Ptree metaobjects:

They represent a parse tree of the program. The parse tree is implemented as a
nested-linked list.

e Environment metaobjects:

They represent bindings between names and types. Since this MOP is a compile-
time MOP, the runtime values bound to names are not available at the meta level.

e Typelnfo metaobjects:

They represent types that appear in the program. The types include derived types
such as pointer types and reference types as well as built-in types and class types.

e Class metaobjects:

As well as they represent class definitions, they control source-to-source translation
of the program. Programmers may define subclass€dasfs in order to tailor
the translation.

¢ Member metaobjects:

They represent class members. They inform whether the member is a constructor,
an inline function, a data member, a public member, or so forth.

DistinguishingTypelnfo metaobjects an@€lass metaobjects might look like
wrong design. But this distinction is needed to handle derived typgselnfo
metaobjects were introduced to deal with derived types and fundamental types by
using the same kind of metaobjects.

4 Representation of Program Text

Program text is accessible at the meta level in the form of parse tree. The parse tree
is represented by Btree metaobject. It is implemented as a nested linked-list

of lexical tokens — the S expressions in the Lisp terminology. For example, this
piece of code:

inta=>b+c* 2
is parsed into:
[static] [int] [[a = [b + [c * 2]]]] :]

Here,[] denotes a linked list. Note that operators suck and+ make sublists.
The sublists and their elements (that is, lexical tokens suchasd=) are also
represented biPtree metaobjects.

4.1 Basic Operations

To manipulate linked lists, the MOP provides matigtic member functions on
Ptree , which are familiar to Lisp programmers:

e static Ptree* First(Ptree* Ist)
This returns the first element st

e static Ptree* Rest(Ptree* Ist)
This returns the rest d§t except the first element, that is, toeér field of Ist

e static Ptree* Second(Ptree* Ist)
This returns the second elementisitf

e static Ptree* Third(Ptree* Ist)
This returns the third element tsft.

e static Ptree* Nth(Ptree* Ist, int n)
This returns th@-th element ofst . Nth(lst, 0) is equivalent td-irst(lIst)

e static Ptree* Last(Ptree* Ist)
This returns the last cons cell, which is a list containing only the last element of
Ist

e static Ptree* ListTail(Ptree* Ist, int k)
This returns a sublistd§t obtained by omitting the firé elementsListTail(Ist, 1)
is equivalent tdRest(Ist)

e static int Length(Ptree* Ist)
This returns the number of the elementslsif . If Ist is not a list, then this
returns a negative number.

e static Ptree* Cons(Ptree* a, Ptree* b)
This returns a cons cell whosar field isa and whosedris b.

e static Ptree* List(Ptree* el, Ptree* e2, ..)
This returns a list whose elements afg, e2, ... List() returns a null lishil

e static Ptree* Append(Ptree* Istl, Ptree* Ist2)
This concatenatdstl andlIst2 . It returns the resulting list.

e static Ptree* CopyList(Ptree* Ist)
This returns a new list whose elements are the sans ass.

e static Ptree* ReplaceAll(Ptree* Ist, Ptree* orig, Ptree* subst)
This returns a list in which all occurrences offig in Ist are replaced with
subst . This is not a destructive operation.

e static bool Eg(Ptree* Ist, char x)

e static bool Eq(Ptree* Ist, char* x)

e static bool Eq(Ptree* Ist, Ptree* Xx)

This returnstrue if Ist andx are equal. Iix is Ptree* , this determines the
equivalence by comparing the pointers.

e static bool Equal(Ptree* x, Ptree* y)
This recursively comparesandy and returndrue if they are equivalent.

Furthermore, the following member functions are availablePtree metaob-
jects:

e bool IsLeaf()
This returndrue if the metaobject indicates a lexical token.

e void Display()

10

This prints the metaobject on the console for debugging. Sublists are surrounded
by[and] .

e char* ToString()
This converts the parse tree into a character string and returns it.

e int Write(ostream& out)

This writes the metaobject to the file specifiedduy . Unlike Display() , sub-
lists are not surrounded lyand] . This member function returns the number of
written lines.

e Ostreamé& operator <<(ostreamé& s, Ptree* p)
The operatok< can be used to write Btree object to an output stream. It is
equivalent toNrite() in terms of the result.

The parse tree is basically a long list of the lexical tokens that appear in the pro-
gram although some of them are grouped into sublists. The order of the elements
of that list is the same as the order in which the lexical tokens appear. But if some
fields such as the type field are omitted in the program, tiien is inserted at
those places. For example, if the return type of a function declaration is omitted as
follows:

main(int argc, char** argv){ }

thennil listis inserted at the head of the list:

[l nil_l[main ([lint] [argc]] , [[char] [* * argv]]])] [{
ni

1]

Since the function body is also omittad| list is inserted betweeh and} .

4.2 Construction

Programmers can maliree metaobjects. Because the MOP provides a conser-
vative garbage collector, they don’t need to care about deallocation of the metaob-
jects. The nexstatic member functions oRtree are used to makeRtree
metaobjects.

e static Ptree* Make(char* format, [Ptree* sublist, ...])

This makes ®#tree metaobject according to tiermat . Theformat isa null-
terminated string. All occurrences &6c (character)%d (integer),%s (character

11

string), andop(Ptree) in theformat are replaced with the values following the
format . %%n theformat is replaced witt%o

e static Ptree* GenSym()
This generates a unique symbol name (aka identifier) and returns it. The returned
symbol name is used as the name of a temporary variable, for example.

The Ptree metaobject returned bylake() is not a real parse trédt is just a
unparsed chunk of characters. Although programmers caRtuse metaobjects
generated bivlake() as they use othd?tree metaobjects, the structure of those
metaobjects does not reflect the code they represent.

UsingMake() , programmers can easily generate any piece of code to substi-
tute for part of the original source code. For example, supposs_name is
xpos andoffset is 3. The following function call:

Ptree::Make("%p[%d]", array_name, offset)

makes &Ptree metaobject that represents:
Xpos[3]

%psimply expand a giveRtree metaobject as a character string. Thus program-
mers may write something like:

Ptree::Make("char* GetName(){ return \"%p\"; }",
array_name);

Note that a double quoté must be escaped by a backslasln a C++ string.
\"%p\" makes a string literal. The function call above generates the code below:

char* GetName()}{ return "xpos"; }

Although Make() follows the oldprintf() style, programmers can also
use a more convenient style similar to Lisp’s backquote notation. For example,

Ptree::Make("%p[%d]", array_name, offset)

The expression above can be rewritten ugjMpke() as follows:

Ptree::gMake("array_name‘[‘'offset]")

2At least, for the time being.

12

Note that the “backqouted” C++ expressi@arsay _name andoffset are di-
rectly embedded in the C++ string. Their occurrence are replaced with the value
of the expression. This replacement cannot be implemented in regular C++. Itis
implemented by the metaclass fetree .

e static Ptree* gqMake(char* text)

This makes @tree metaobject that represents ttext . Any C++ expression
surrounded by backquotéscan appear inext . Its occurrence is replaced with
the value denoted by the expression. The type of the expression mseles |
int , orchar* .

Except the difference in the notatiogMake() is equivalent taMake() . Pro-
grammers can choose either one they prefer at any place.

4.3 Pattern Matching

The MOP provides atatic member function oPtree metaobjects for pattern
matching.

e static BOOL Match(Ptree* list, char* pattern,

[Ptree** sublist, ...])
This compares thpattern andlist . If they match, this function returrisue
and binds thesublist s to appropriate sublists of thist , as specified by the
pattern . Note that the type afublist is pointer toPtree*

For example, the functioMatch() is used as follows:

if(Ptree::Match(expr, "[%? + %7?]", &lexpr, &rexpr))
cout << "this is an addition.";

else if(Ptree::Match(expr, "[%? - %7?]", &lexpr, &rexpr))
cout << "this is a subtraction.";

else
cout << "unknown";

The patteri%? + %7?] matches a linked list that consists of three elements if the
second one is. If an expressioexpr matches the pattertexpr gets bound to
the first element oéxpr andrexpr gets bound to the third element.

The pattern is a null-terminated string. Sinddatch() does not under-
stand the C++ grammar, lexical tokens appearing in the pattern must be separated
by a white space. For example, a pattanb is regarded as a single token. The
pattern is constructed by these rules:

13

1. A word (characters terminated by a white space) is a pattern that matches a
lexical token.

. %[, %], and%%are patterns that mat¢h] , and%
. [l is a pattern that matches a null listl().
. [patl pat2...] is a pattern that matches a listjdtl, pat2, ...

. %*is a pattern that matches any token or list.

o o0~ W N

. %7?is a pattern that matches any token or list. The matched token or list is
bound tosublist

\l

. %_is a pattern that matches the rest of the list (ttle part).

8. %r is a pattern that matches the rest of the list. The matched list is bound to
sublist

4.4 Reifying Program Text

If a Ptree metaobject represents a literal such as an integer constant and a string
literal, we can obtain the value denoted by the literal.

e static BOOL Reify(unsigned int& value)

This returngrue if the metaobject represents an integer constant. The denoted
value is stored ivalue . Note that the denoted value is always a positive number
because a negative number suchdagienerates two distinct tokens suchaand

4.

e static BOOL Reify(char*& string)

This returngrue if the metaobject represents a string literal. A string literal is a
sequence of character surrounded by double quot€ke denoted null-terminated
string is stored irstring . It does not include the double quotes at the both ends.
Also, the escape sequences are not expanded.

Note: the character string returned BRgify() is allocated in the heap area.

However, because the MOP provides a conservative garbage collector, program-
mers do not need to deallocate the string by themselves.

14

4.5 Support Classes

The MOP provides two support clasdeseelter andPtreeArray to help
programmers to deal witRtree objects.Ptreelter is useful to perform iter-
ation on a list ofPtree objects. Suppose thakpr is a list:

Ptreelter next(expr);

Ptree* p;

while((p = next()) !'= nil){
/[compute on p

Each element adxpr is boundt@ one atatime. The operatQr onPtreelter

objects returns the next element. Programmers mayoal{) instead of the oper-
ator() . Since the two functions are equivalent, the program above can be rewritten
to be:

Ptreelter next(expr);

Ptree* p;

while((p = next.Pop()) = nil){
/[compute on p

If the reader prefers thfer -loop style, she may also say:

for(Ptreelter i = expr; l.Empty(); i++){
/[compute on *i

Although this interface is slightly slower, it distinguishes the end of the list and a
nil element. Ifexpr includesnil , Pop() cannot correctly detect the end of
the list.

Another support class BtreeArray for dealing with an unbounded array
of Ptree objects. It is used as follows (suppose tegpr is aPtree object):

PtreeArray a; /I allocate an array

a.Append(expr); /I append expr to the end of the array
Ptree* p = a[0]; /I get the first element

Ptree* p2 = a.Ref(0); /I same as a[0]

int n = a.Number(); /I get the number of elements

Ptree* Ist = a.All(); /I get a list of all the elements

a.Clear(); /[make the array empty

15

5 Representation of Environments

Environment metaobjects represent bindings between names and types. If the
name denotes a variable, it is bound to the type of that variable. Otherwise, if the
name denotes a type, it is bound to the type itself. Programmers can look up names
by the following member functions dénvironment metaobjects:

e bool Lookup(Ptree* name, bool& is_type name, Typelnfo& t)

This looks up the givename into the environment and returtrsie if found. The
type ofnameis returned at . If the name is a type namis,_type_name is set
totrue . Ifitis a variable nameis_type _name s set tofalse

e bool Lookup(Ptree* name, Typelnfo& t)
This is an alias ofookup(Ptree*, bool&, Typelnfo&) described above.

e Class* LookupClassMetaobject(Ptree* class_name)

This looks up the giverlass_name and returns th€lass metaobject of the
type. If theclass_name is not found, this function returndl (class_name
may be a variable name.)

¢ bool RecordVariable(char* name, Class* metaobject)
This records a variableame in the environment. The type of that variable is a
class type specified hyetaobject

¢ bool RecordPointerVariable(char* name, Class* metaobject)
This records a variableame in the environment. The type of that variable is a
pointer type to the class specified imetaobject

e void Dump()
This is for debugging and prints the elements in the inner-most environment on
stderr.

e void Dump(int i)

This is for debugging and prints the elements in thtéh outer environment on
stderr.Dump(0) is equivalent tdump() .

16

6 Representation of Types

Typelnfo metaobjects represent types. Because C++ deals with derived types
such as pointer types and array typéass metaobjects are not used for primary
representation of typeSypelnfo metaobjects do not tregtpedef ed types as
independent types. They are treated just as aliases of the original types.

The followings are member functions diypelnfo metaobjects:

e Typelnfold Whatls()

This returns amnumconstant that corresponds to the kind of the typeiitinType
ClassType (includingclass ,struct , andunion), EnumType, TemplateType
PointerType , ReferenceType , PointerToMemberType

ArrayType , FunctionType , TemplateType , orUndefType (the type is
unknown).

e Ptree* FullTypeName()

This returns the full name of the type if the type is a built-in type, a class type, an
enumtype, or a template class type. Otherwise, this retaihs. For example, if

the type is a nested claydefined within a clasX, this returnsX::Y .

¢ bool IsConst()
This returndrue if the type is const.

e bool IsVolatile()
This returngrue if the type is volatile.

e uint IsBuiltinType()

This returns a bit field that represents what the built-in type is. If the type is not
a built-in type, it simply return® (false). To test the bit field, these masks
are availableCharType , IntType , ShortType ,LongType , SignedType ,
UnsignedType , FloatType , DoubleType , LongDoubleType ,

BooleanType , andVoidType . ForexamplelsBuiltinType() & Long-

Type istrue if the type islong , unsigned long , orsigned long

e bool IsPointerType()
This returndrue if the type is a pointer type.

¢ bool IsReferenceType()
This returndrue if the type is a reference type.

17

e bool IsFunction()
This returngrue if the type is a function type. To obtain the type of the returned
value, examine the dereferenced type of the function type.

e bool IsArray()
This returngrue if the type is an array type. To obtain the type of the array com-
ponents, examine the dereferenced type of the array type.

e bool IsPointerToMember()
This returndrue if the type is a pointer to member.

e bool IsTemplateClass()
This returngrue if the type is a class template.

e bool IsEnum()
This returndrue if the type is an enum type.

e bool IsEnum(Ptree*& spec)
This returndrue if the type is an enum type. THetree metaobject represent-
ing theenum declaration is stored ispec .

¢ bool IsClass(Class*& metaobject)
This returndrue if the type is a class type. THeélass metaobject representing
the class type is stored imetaobject

¢ Class* ClassMetaobject()
This returns &€lass metaobject that represent the type. If the type is riddss
type, it simply returnsil

TheTypelnfo metaobjects also provide methods for computing the dereferenced
type. For example, those methods are used to get the type of the value that a pointer
points to. Suppose that the type of the pointenis . If the dereferenced type of

that pointer type is computed, thért is obtained.

¢ void Dereference(Typelnfo& t)
This returns the dereferenced typetin. If dereferencing is not possible, the
Undef type isreturned in .

e void Dereference()
This is identical toDereference(Typelnfo&) except that thel'ypelnfo

18

metaobiject itself is changed to represent the dereferenced type.

¢ void Reference(Typelnfo& t)
This returns the referenced typetin For example, if the type imt* , then the
referenced type igt**

¢ void Reference()
This is identical tdReference(Typelnfo&) exceptthatth@ypelnfo metaob-
ject itself is changed to represent the referenced type.

The dereferenced type of a function type is the type of the return value. For exam-
ple, if the function type isvoid f(char) , then the dereferenced typevsid

. If no return type is specified (e.g. constructors), the dereferenced type of the
function type is “no return type.”

e bool IsNoReturnType()
This returndrue if the return type of the function is not specified.

The Typelnfo metaobjects also provide a method to obtain the types of func-
tion arguments.

e int NumOfArguments()
This returns the number of the arguments. If the type is not a function type, then it
returns -1.

¢ bool NthArgument(int nth, Typelnfo& t)

If the type isFunctionType , this returns the type of theth (> 0) argument
int . If the type is notFunctionType or thenth argument does not exist, this
function returndalse . If the nth argumentis.. (ellipses), then the returned
type is an ellipsis type (see below.)

e bool IsEllipsis()
This returngrue if the type is an ellipsis type.

Finally, we show a convenient method for constructingteee metaobject that
represents the declaration of a variable of the type.

e Ptree* MakePtree(Ptree* varname = nil)

This makes @tree metaobject that represents the declaration (or a function) of
a variable of the type. For example, if the type is pointer to integer, this returns

19

[int * varname] . varname may benil

If the type is a function typeVlakePtree() returns a function prototype match-

ing that type. The argument names in the prototype is omitted. To construct a
function prototype including argument names, programmers need to write as fol-
lows. Suppose thdtype is the type of the functiomatype is the type of the
argument, the function name$et , and the argument namewsdth :

Ptree* arg = atype.MakePtree(Ptree::Make("width"));

Ptree* func = Ptree::gMake("Set(‘arg")");

ftype.Dereference();

Ptree* proto = ftype.MakePtree(func); /[function prototype

20

7 Class Metaobjects

Class metaobjects are the most significant metaobjects of the MOP. Although other
metaobjects only represent a structural aspect of the program, the class metaobjects
not only represent such a structural aspect but also allow programmers to define a
subclass and alter the behavior of the program.

The default class for the class metaobjectSless , which provides member
functions for accessing the class definition. To alter a behavioral aspect of the class,
the programmer define a subclassQass that overridesvirtual functions
controlling source-to-source translation involved with the class.

7.1 Selecting a Metaclass

In general, the class of a metaobject is selected byrtbtaclass declaration at
the base level. For example:

metaclass PersistentClass Point;

declares that the metaclass fwint is PersistentClass . This means that
the compiler instantiateBersistentClass and makes the instantiated object
be the class metaobject representgint . SincePersistentClass is a
regular C++ class but its instance is a class (metaobjeetsistentClass is
called “metaclass”. This might look weird, but regard a class metaobject as being
identical to the class.

Programmers may specify a metaclass in a way other thamétaclass
declaration. The exact algorithm to select a metaclass is as described below:

1. The metaclass specified by tinetaclass declaration.

2. The metaclass specified by the keyword attached to the class declaration if
exists.

3. Or else, the metaclass for the base classes. If they are different, an error is
caused.

4. Otherwise, the default metaclaSkss is selected.

Programmers may specify a metaclass by a user-defined keyword. For example,

distribute class Dictionary { ... };

21

This means that the metaclass associated with the user-defined kelistdtulite
is selected foDictionary . Ifthere is also a metaclass declarationDactionary
then an error occurs.

Although the default metaclass @ass , programmers can change it to an-
other metaclass:

e static void ChangeDefaultMetaclass(char* name)

This changes the default metaclasaame. It should be called binitialize()

defined for a metaclass loaded by t% option at the beginning. Otherwise, that
metaclass should be explicitly loaded by thetaclass declaration, after which
the new default metaclass is effective.

7.2 Constructor

Class metaobjects may receive a meta argument when they are initialized. The
meta argument is specified by programmers, for example, as follows:

metaclass PersistentClass Point("db", 5001);

ThePtree metaobjecf'db” , 5001] is a meta argument to the class metaob-
ject for Point . Also, the programmers may specify a meta argument in this syn-
tax:

distribute("db”, 5001) class Dictionary { ... };

The user-defined keywordistribute can lead a meta argument. The class
metaobject foDictionary receives the same meta argument that the class metaob-
ject forPoint receives in the example above.

The member functiofnitializelnstance() on Class (and its sub-
classes) is responsible to deal with the meta argument. By default, the meta argu-
ment is simply ignored:

e Class()
This constructor performs nothing. The initialization is performed by
Initializelnstance() invoked just after the constructor. For this reason,

the member functions supplied Bfass are not executable in the constructors of
the subclasses @lass .

Note: only the OpenC++ compiler can call this constructor. The user programs
should not call it.

22

e void Initializelnstance(Ptree* definition, Ptree* meta_arg)
This is automatically invoked just after the constructor is invoked. It initializes the
data members of the class metaobject and processes the meta argdeferitsan
is aPtree metaobject representing the class declaration. If a meta argument is not
given,meta_arg isnil . This member functionis nalverridable Initializelnstance()
of the subclasses @flass must call the base-class’gstializelnstance()
at thebeginning
Note: This has been separeted from the constructor. Otherwise, the constructor
of Class would take two arguments and thus all the metaclasses have to have a
constructor just for passing the arguments to the constructolass .

Note: only the OpenC++ compiler can call this member function. The user
programs should not call it.

Another constructor is provided for the programmers to produce a new class. This
is an example of the use of this constructor:

void MyClass:: TranslateClass(Environment* e)

{
Member m;
Class* ¢ = new Class(e, "Bike");
LookupMember("move", m);
c->AppendMember(m);
AppendAfterToplevel(e, c);

}

A new class nameBike is created, a member namenbve is retrieved from the

class represented by this class metaobject, and the retrieved member is copied to
that new class. The created cl&ke is then inserted in the source code after the
declaration of the class represented by this class metaobject.

e Class(Environment* e, char* name)

This constructor creates a class with the givemme. The created class has no
member. If this constructor is invokelhitializelnstance() is not called.
No subclass o€lass can inherit or invoke this constructor.

e Class(Environment* e, Ptree* name)

This constructor creates a class with the giveme. The created class has no
member. If this constructor is invokebhjtializelnstance() is not called.
No subclass oflass can inherit or invoke this constructor.

e void InsertBeforeToplevel(Environment* e, Class* c)

23

This inserts the class specified by the metaolgeicist before the toplevel decla-
ration.

¢ void AppendAfterToplevel(Environment* e, Class* c)
This appends the class specified by the metaobj@cst before the toplevel decla-
ration.

7.3 Introspection

Since a class metaobiject is the meta representation of a class, programmers can ac-
cess details of the class definition through the class metaobject. The followings are
member functions on class metaobjects. The subclas€aass cannot override

them.

e Ptree* Name()
This returns the name of the class.

e Ptree* BaseClasses()
This returns the base classes of the class. For example, if the class declaration is:

class C : public A, private B { ... };
Then,BaseClasses() returns éPtree metaobject:

[[public A] , [private B]]

e Ptree* Members()
This returns the body of the class declaration. It is a list of member declarations. It
does not includ¢ and} .

e Ptree* Definition()
This returns thétree metaobject representing the whole class declaration.

e char* MetaclassName()
This returns the name of the metaclass.

e Class* NthBaseClass(int n)
This returns tha-th (> 0) base class.

24

e Ptree* NthBaseClassName(int n)
This returns the name of theth (> 0) base class.

e bool IsSubclassOf(Ptree* class_name)
This returndrue if the class is a subclass ofass _name .

¢ bool IsimmediateSubclassOf(Ptree* class_name)
This returndrue if the class is an immediate subclassli#dss name .

e bool NthMember(int n, Member& m)

This returngrue if the n-th (> 0) member, including data members and mem-
ber functions, exists. The member metaobject representing-themember is
returned inm If the class is a subclass, the member is an inherited one from the
base class.

e bool LookupMember(Ptree* name, Member& m, int i = 0)

This returnstrue if the member namedame exists. The member metaobject
representing that member is returnedrahe member may be an inherited one. If
there are more than one members nameue, thei -th (> 0) member is returned.

e bool LookupMember(Ptree* name)
This returnstrue if the member namedame exists. The member may be an
inherited one.

e bool LookupMember(char* name, Member& m, int i = 0)

This returnstrue if the member namedame exists. The member metaobject
representing that member is returnedahe member may be an inherited one. If
there are more than one members nameue, thei -th (> 0) member is returned.

e bool LookupMember(char* name)
This returnstrue if the member namedame exists. The member may be an
inherited one.

7.4 Translation

Class metaobjects control source-to-source translation of the program. Expressions
involving a class are translated from OpenC++ to C++ by a member function on

25

the class metaobjedtProgrammers may define a subclas€tdss to override
such a member function to tailor the translation.

The effective class metaobject that is actually responsible for the translation is
thestatictype of the object involved by the expression. For example, suppose:

class Point { public: int x, y; }
class ColoredPoint : public Point { public: int color; };

Point* p = new ColoredPoint;

Then, an expression for data member rgadx , is translated by the class metaob-
ject for Point because the variable is a pointer to noColoredPoint but
Point . Although this might seem wrong design, we believe that it is a reasonable
way since only static type analysis is available at compile time.

7.4.1 Class Definition

The class definition is translated ByanslateClass() . For example, if a
member functiori() is renamed)() ,the member functiomranslateClass()
should be overridden to be this:

void MyClass:: TranslateClass(Environment* e)

{
Member m;
LookupMember("f", m);
m.SetName(Ptree::Make('g"));
ChangeMember(m);

}

First, the member metaobject figy is obtained and the new narg@ is givento

that member metaobject. Then, this change is reflected on the cl&ssbhgeMember() .
The claslass provides several member functions, suckchangeMember() ,

for translating a class definition. Programmers can ovefliidaslateClass()

to call these functions and implement the translation they want.

¢ void TranslateClass(Environment* env)

This may call the member functions shown below and translate the declaration of
the class.

— Default implementation bgZlass

This performs nothing.

%In the current version, the translated code is not recursively translated again. So the metaob-
jects have to translate code from OpenC++ to C++ rather than from OpenC++ to (less-extended)
OpenC++. This limitation will be fixed in future.

26

¢ void RemoveClass()
This removes the whole declaration of the class from the source code.

¢ void ChangeName(Ptree* new_name)

This changes the name of the class. Note that this member function only substitutes
new_namefor the identifier following theclass keyword in the declaration. The
constructors or any other occurence of the class name are not changed.

¢ void ChangeBaseClasses(Ptree* base_classes)
This replaces the base-classes field of the class declaration with thdgsenclass

¢ void RemoveBaseClasses()
This removes the base classes from the class declaration. The class does not inherit
other classes after the translation.

¢ void AppendBaseClass(Class* c, int specifier = Public,
bool is_virtual = false)

This appends a given clagsto the list of the base classespecifier is
either Class::Public , Class::Protected , or Class::Private L f
is_virtual istrue , then the appended base clasgittual

¢ void AppendBaseClass(Ptree* class_name, int specifier = Pub-
lic,

bool is_virtual = false)
This appends a given class namddss_name to the list of the base classes.
specifier is eitherClass::Public , Class::Protected , orClass::Private
If is_virtual istrue , then the appended base classgiitial

¢ void AppendBaseClass(char* class_name, int specifier = Pub-
lic,

bool is_virtual = false)
This appends a given class namddss_name to the list of the base classes.
specifier is eitherClass::Public , Class::Protected , orClass::Private
If is_virtual istrue , then the appended base clasgiitual

¢ void ChangeMember(Member& changed_member)

This alter a member according ¢thanged_member . The member metaobject
changed_member must be the object returned lhypokupMember() . Note

that the change of the member metaobject is not reflected until this member func-

27

tion is called.

¢ void RemoveMember(Member& removed_member)
This removes the member specifiedrbynoved_member . The member metaob-
jectremoved_member must be the object returned hpokupMember()

¢ void AppendMember(Member& added_member,

int specifier = Public)
This appends a new member to the clapecifier is eitherClass::Public ,
Class::Protected , or Class::Private . This member function is used
to append a member similar to an existing one. For exangalded_member
may be the object returned byokupMember() and calledSetName() on to
change the member name.

¢ void AppendMember(Ptree* text)

This insertdext after the member declarations in the original class declaration.
text can be not only a member declaration but also a nested class declaration, an
access specifier, and any kind of program text.

The implementation of member functions is translated by

TranslateMemberFunction() . For example,
void Point::Move(int rx, int ry)
{
X += rx;
y +=1y;
}
To translate this function implementation, the compiler calls
TranslateMemberFunction() on the class metaobject fBoint . The ar-

guments are an environment and a member metaobjebtdue() . If this mem-

ber metaobject is changed by member functions su@eddame() , the change

is reflected on the program. Unlike class declarations, no explicit function call for
the reflection is not needed. For example,

void MyClass:: TranslateMemberFunction(Environment* env, Mem-
ber& m)

m.SetFunctionBody(Ptree::Make("{}"));
}

This customizes the member function so that it has an empty body.

28

¢ void TranslateMemberFunction(Environment* env, Member& m)

This translates the implementation of a member function specified e com-
piler does not call this function if the member function is inlined in the class dec-
laration. For example,

class Point {

public:
void Reset() {x=y=0;}
void Move(int, int);
int X, v;

inline void Point:Move(int rx, int ry) { ... }

TranslateMemberFunction() is called only forMove() . The implemen-
tation ofReset() can be translated biyranslateClass() . Note that, even if
the implementation dflove() is translated by ranslateMemberFunction() :
the member declaration dflove() in the class declaration is not translated. It
needs to be explicitly translated TmanslateClass()

— Default implementation bgZlass

This performs nothing.

¢ void InsertBeforeToplevel(Environment* e, Member& m)

This inserts the member function specifiedrbyust before the toplevel declara-
tion. It should be used to insert the implementation of a member function de-
rived from the argumenin of TranslateMemberFunction() . Note that
AppendMember() only appends a member declaration in the class declaration.

¢ void AppendAfterToplevel(Environment* e, Member& m)

This appends the member function specifiednbjust before the toplevel dec-
laration. It should be used to append the implementation of a member function
derived from the argumemh of TranslateMemberFunction() . Note that
AppendMember() only appends a member declaration in the class declaration.

7.4.2 EXxpressions

Class metaobijects also control the translation of expressions. An expressions, such
as member calls, are translated by one of the followinial ~ functions on the
class metaobject involved with the expression. For example, if the expression is

29

a member call on Roint object, it is translated by the class metaobject for the
Point class.

e Ptree* Translatelnitializer(Environment* env, Ptree* var_name,
Ptree* expr)
This translates a variable initializexpr , which would be[= expressioh or
[([expressioh)] . The two forms correspond to C++’s two different nota-
tions for initialization. For example:

complex p(2.3, 4.0);
complex q = 0.0;

The initializers arg([2.3 , 4.0])] and[= 0.0] , respectively.
The argumentar_name indicates the name of the variable initialized by
expr .
— Default implementation bgZlass
This translategxpr by calling TranslateExpression() on the second el-

ement ofexpr .

e Ptree* TranslateAssign(Environment* env, Ptree* object,

Ptree* assign_op, Ptree* expr)
This translates an assignment expression sueteasl+=. object is an instance
of the class, which the value eixpr is assigned toassign_op is an assign-
ment operatorobject andexpr have not been translated yet.
— Default implementation bZlass
This callsTranslateExpression() onobject andexpr and returns the
translated expression.

e Ptree* TranslateBinary(Environment* env, Ptree* lexpr,
Ptree* binary_op, Ptree* rexpr)
This translates a binary expressidanary _op is the operator such &s +, <<,
==,], && and, (comma).lexpr andrexpr are the left-side expression and
the right-side expression. They have not been translated yet. The class metaobject
that this function is called on is for the type @xpr .
— Default implementation bZlass
This callsTranslateExpression() onlexpr andrexpr and returns the
translated expression.

e Ptree* TranslateUnary(Environment* env, Ptree* unary_op,

Ptree* object)
This translates a unary expressiomary_op is the operator, which are either

30

& +,-,1,7,++, 0r-- . sizeof is notincluded.object is an instance of the
class, which the operator is applied tiject has not been translated yet.

— Default implementation bZlass

This callsTranslateExpression() on object and returns the translated
expression.

e Ptree* TranslateSubscript(Environment* env, Ptree* ob-
ject,

Ptree* index)
This translates a subscript expression (array accebg@ct is an instance of the
class, which the operatfir denoted byndex is applied toindex is alist[\[
expression]] . object andexpr have not been translated yet.
— Default implementation bgZlass
This callsTranslateExpression() onobject andindex and returns the
translated expression.

e Ptree* TranslatePostfix(Environment* env, Ptree* object,
Ptree* post_op)
This translates a postfix increment or decrement expressioi(--). object
is an instance of the class, which the opergtost_op is applied to.object
has not been translated yet.
— Default implementation bgZlass
This callsTranslateExpression() onobject and returns the translated
expression.

e Ptree* TranslateFunctionCall(Environment* env,

Ptree* object, Ptree* args)
This translates a function call expressionaiject . Note that it is not for trans-
lating a member function call. It is invoked to translate an application of the call
operator() . object is an instance of the clas®bject andargs have not
been translated yet. For example:

class lterator { ... };
Iteratér next;

while(p = next())
record(p);

TranslateFunctionCall() is called on the class metaobject ftarator
to translatenext() . In this casepbject indicatesnext .

31

— Default implementation bZlass
This callsTranslateExpression() onobject andTranslateArguments()
onargs , and returns the translated expression.

e Ptree* TranslateNew(Environment* env, Ptree* header,
Ptree* new_op, Ptree* placement,

Ptree* type_name, Ptree* arglist)
This translates aew expressionheader is a user-defined keyword (type mod-
ifier), :: (if the expression is:new), or nil . new_op is the new operator.
type_name may include an array size surrounded [by. arglist is argu-
ments to the constructor. It includes parenthé€sesplacement ,type _name ,
andarglist have not been translated yet.
— Default implementation bgZlass
This callsTranslateArguments() onplacement andarglist ,andTranslateNewType()
ontype_name . Then it returns the translated expression.

e Ptree* TranslateDelete(Environment* env, Ptree* delete_op,

Ptree* object)
This translates a delete expression on dbgect . delete_op is the delete
operator. Note that this function is not called ctelete ordelete [] ex-
pressions.
— Default implementation bgZlass
This callsTranslateExpression() on theobject and returns the trans-
lated expression.

¢ Ptree* TranslateMemberRead(Environment* env, Ptree* ob-
ject,

Ptree* op, Ptree* member)
This translates a member read expression orobject . The operatoop is .
(dot) or-> . member specifies the member nam@bject has not been translated
yet.
— Default implementation bZlass
This callsTranslateExpression() on theobject and returns the trans-
lated expression.

e Ptree* TranslateMemberRead(Environment* env, Ptree* mem-

ber)

This translates a member read expression othilse object. Thatis, it is invoked
if the object is not explicitly specified.

— Default implementation bgZlass

32

This returnanember.

e Ptree* TranslateMemberWrite(Environment* env, Ptree* ob-
ject,
Ptree* op, Ptree* member, Ptree* as-
sign_op, Ptree* expr)
This translates a member write expression onabject . The operatoop is
. (dot) or->. member specifies the member namassign_op is an assign
operator such as and+=. expr specifies the right-hand expression of the assign
operatorobject andexpr have not been translated yet.
— Default implementation bgZlass
This callsTranslateExpression() onobject andexpr and returns the
translated expression.

e Ptree* TranslateMemberWrite(Environment* env, Ptree* mem-
ber,

Ptree* assign_op, Ptree* expr)
This translates a member write expression onttli® object. That is, it is in-
voked if the object is not explicitly specifiechember specifies the member name.
assign_op is an assign operator suchasand+= . expr specifies the right-
hand expression of the assign operagompr has not been translated yet.
— Default implementation bgZlass
This callsTranslateExpression() onexpr and returns the translated ex-
pression.

e Ptree* TranslateMemberCall(Environment* env, Ptree* ob-
ject,

Ptree* op, Ptree* member, Ptree* arglist)
This translates a member function call on tigect . The operatoop is. (dot)
or-> . member specifies the member nanerglist is arguments to the func-
tion. It includes parenthes€s . object andarglist have not been translated
yet.
— Default implementation bgZlass
This callsTranslateExpression() onobject ,andTranslateArguments()
onarglist . Then it returns the translated expression.

¢ Ptree* TranslateMemberCall(Environment* env, Ptree* mem-
ber,
Ptree* arglist)
This translates a member function call on this object. That is, it is invoked

33

if the object is not explicitly specified.member specifies the member name.
arglist is arguments to the function. It includes parenthg3es arglist

has not been translated yet.

— Default implementation bgZlass

This callsTranslateArguments() onarglist and returns the translated
expression.

e Ptree* TranslateUnaryOnMember(Environment* env, Ptree* unary_op,

Ptree* object, Ptree* op,

Ptree* member)

This translates a unary operator applied to a member. For example, if an expres-
sion is++p->i , this member function is called on tiges class. The argument
unary_op is++, object isp,opis->,andmemberisi .
— Default implementation bZlass
This callsTranslateExpression() onobject and returns the translated
expression.

e Ptree* TranslateUnaryOnMember(Environment* env, Ptree* unary_op,
Ptree* member)
This translates a unary operator applied to a member. For example, if an expression
is--i andi is a member, this member function is called on the the claghi®r
object. The argumentnary_op is-- andmemberisi .
— Default implementation bZlass
This returns the given expression as is.

¢ Ptree* TranslatePostfixOnMember(Environment* env, Ptree* ob-
ject,

Ptree* op, Ptree* member,

Ptree* postfix_op)

This translates a postfix operator applied to a member. For example, if an expres-
sion isp->i++ , this member function is called on thes class. The argument
object isp,opis->,memberisi ,andpostfix_ op is++.
— Default implementation bgZlass
This callsTranslateExpression() onobject and returns the translated
expression.

e Ptree* TranslatePostfixOnMember(Environment* env, Ptree* mem-
ber,
Ptree* postfix_op)
This translates a postfix operator applied to a member. For example, if an expres-

34

sion isi++ andi is a member, this member function is called on the the class for
this object. The argumemhemberisi andpostfix_op is++.

— Default implementation bZlass

This returns the given expression as is.

e Ptree* TranslatePointer(Environment* env, Ptree* vari-

able_name)

This translates occurrences of the pointer variables, sutiisas, indicating in-
stances of this class. It translates those variables even if they are the left values of
assignment expressions. Note that this function is also called on the target expres-
sion of the-> operator from within (the defaulfjranslateMemberCall()

etc.

— Default implementation bgZlass

This returnsvariable_name asis.

e Ptree* TranslateUserStatement(Environment* env, Ptree* ob-
ject,

Ptree* op, Ptree* keyword, Ptree* rest)
This translates a user-defined statement, which is a while-style, for-style, or closure
statement. The first three elements of the statement are speciftdgdny , op,
andkeyword . The rest of the statement, tfle part and thg} part, is specified
by rest . For example:

matrix.forall(e) {e=00;}
If forall is a user-defined keyword for the while-style statemebfect is
matrix ,op is. (dot),keyword isforall ,andrest is
[(e) [[le=00];}

To recursively translate tH¢ part, TranslateExpression() should be
called on the last element oést , that is, rest->Last()->First() L f

the statement is a closure statement, the declared arguments are recorded in the
given environmenenv. Since the scope representeddaw is only within the
statement, those declared arguments are removeddnwrafter this function is
completed.

— Default implementation bZlass

This causes an error and retumibk .

e Ptree* TranslateStaticUserStatement(Environment* env,

Ptree* keyword, Ptree* rest)
This translates a user-defined statement beginning with a class hame such as:

35

Lambda::closure(int i) { return i + 1; }

Here,closure is a user-defined keyword. The meaning of the arguments to this
function is the same as that ©fanslateUserStatement()

To recursively translate tH¢ part, TranslateExpression() should be
called on the last element oést , that is,rest->Last()->First() . If the
statement is a closure statement like the example above, the declared arguments
such as are recorded in the given environmemty . Since the scope represented
by env is only within the statement, those declared arguments are removed from
env after this function is completed.

This member function is named after that the syntax is similar to one for
static member function calls.

— Default implementation bgZlass
This causes an error and retumik .

The MOP does not allow programmers to customize array access or pointer oper-
ations. Suppose thatis a pointer to a clas8. Then the class metaobject fAr
cannot translate expressions suchm®r p[3] . This design decision is based on
C++'s one. For example, C++'s operator overloadingjondoes not change the
meaning of array access. It changes the meaning of the opgratguplied to not

an array of objects but an object.

If the MOP allows programmers to customize array access and pointer opera-
tions, they could implement an inconsistent extension. For example, they want to
translate an expressi@fi2] into p->get(2) , wherep is a pointer to a clasx.

Then, what should this expressit(p + 2) be translated into? Should the MOP
regard it as an array access or a pointer dereference? Because C++ provides strong
pointer arithmetic, designing an interface to consistently customize array access
and pointer operations is difficult.

The clasClass also provides functions for translating expressions and actual
arguments. These functions are not overridden but rather called by other functions
shown above:

e Ptree* TranslateExpression(Environment* env, Ptree* expr)
This translates an expression.

e Ptree* TranslateExpression(Environment* env,
Ptree* expr, Typelnfo& t)
This translates an expression and stores its type in

e Ptree* TranslateArguments(Environment* env, Ptree* args)

36

This translates an actual-argument list.

e Ptree* TranslateNewType(Environment* env, Ptree* type_name)

This translates the type name included imeav expression. If the created object is
an array, it callsTranslateExpression() on the expression specifying the
array size. This is called bjranslateNew()

7.5 Registering Keywords

To make user-defined keywords available at the base level, programmers must reg-
ister the keywords by thetatic member functions orClass shown below.
Those member functions should be callediialize()

e static void RegisterNewModifier(char* keyword)

This registerkeyword as a new modifier. If this appears in front of the new op-
erator, the translation is performed byanslateNew() . If it appears in front

of a function argument, then it is automatically eliminated after the translation. Its
existence can be inspected BgtUserArgumentModifiers() on the mem-

ber metaobject.

e static void RegisterNewMemberModifier(char* keyword)

This registerkeyword as a new member modifier. It is automatically eliminated
after the translation. Its existence can be inspected by
GetUserMemberMadifier() on the member metaobject.

e static void RegisterNewAccessSpecifier(char* keyword)

This registerkeyword as a new access specifier. It is automatically eliminated
after the translation. Its existence can be inspected by
GetUserAccessSpecifier() on the member metaobject.

e static void RegisterNewWhileStatement(char* keyword)
This registerkeyword as a newvhile -style statement.

e static void RegisterNewForStatement(char* keyword)
This registerkeyword as a newor -style statement.

e static void RegisterNewClosureStatement(char* keyword)
This registerkeyword as a new closure-style statement.

37

e static void RegisterMetaclass(char* keyword, char* meta-

class)

This registerkeyword as a new modifier and associates it witktaclass . If

this keyword appears in front of a class declaration, thetaclass is selected

for the declared class.

The translation of the registered keyword for the while-, the for-, or the closure-
style statement is the responsibility of the class metaobject. It is processed by
TranslateUserStatement() andTranslateStaticUserStatement()

7.6 Initialization and Finalization

The MOP provides functions to initialize and finalize class metaobjects:

e static bool Initialize()

This is a class initializer; it is invoked only once on each metaclass (not on each
class metaobiject) right after the compiler starts (if it is statically linked) or the
metaclass is dynamically loaded. It retutnge if the initialization succeeds.
The subclasses @lass may define their ownnitialize() but they must

not call their base classdsiitialize()

— Default implementation bgZlass

This does nothing except returnibge .

e Ptree* Finalizelnstance()

This is invoked on each class metaobject after all the translation is finished. The
returnedPtree object is inserted at the end of the translated source file. This
member function is nabverridable Finalizelnstance() of the subclasses

of Class must call the base-class’&malizelnstance()

— Default implementation bZlass

This does nothing except returning .

e static Ptree* FinalizeClass()

This is invoked on each metaclass after all the translation is finished if it exists.
The returnedPtree object is inserted at the end of the translated source file. The
subclasses doflass may define their owrrinalizeClass() but they must

not call their base classeBinalizeClass()

— Default implementation bZlass

This returnanil

e static ClassArray& AllClasses()
This is available only withirFinalizelnstance() . It returns an array of all

38

the classes appearing in the base-level program. The returnedaaisaysed as
follows:

int n = a.Number(); /I get the number of elements
Class* ¢ = a[0]; /I get the first element
Class* c2 = a.Ref(0); /I same as a[0]

e int Subclasses(ClassArray& result)
This is available only withirFinalizelnstance() . It returns the number of
all the subclasses of the class. Those subclasses are also st@sualtin .

¢ int ImmediateSubclasses(ClassArray& result)

This is available only withinFinalizelnstance() . It returns the number

of all the immediate subclasses of the class. Those subclasses are also stored in
result . The immediate subclass means only a child class but not a grand child.

e static int InstancesOf(char* metaclas_name,

ClassArray& result)
This is available only withirFinalizelnstance() . It returns the number of
all the classes that are instances of the metaclass specifiedthglass_name
Also those classes are stored@sult

7.7 Inserting Statements

Class metaobjects can not only replace expressions but also insert statements into
the translated source code:

¢ void InsertBeforeStatement(Environment* e, Ptree* s)
This inserts the statemestjust before the statement currently translated.

¢ void AppendAfterStatement(Environment* e, Ptree* s)
This appends the statemenjust after the statement currently translated.

¢ void InsertBeforeToplevel(Environment* e, Ptree* s)
This inserts the statemestjust before the toplevel declaration, such as function
definitions, that are currently translated.

¢ void AppendAfterToplevel(Environment* e, Ptree* s)

39

This appends the statemenjust after the toplevel declaration, such as function
definitions, that are currently translated.

¢ bool InsertDeclaration(Environment* e, Ptree* d)
This inserts the declaration statemdrdt the beginning of the function body. For
example,

oid Point::Move(int new_x, int new_y)

X = new_x; y = new._y;

-~ <

1:
2:
3:
4:

The declaration statemedtis inserted between the 2nd line and the 3rd line.
This function returngrue if the insertion succeeds.

¢ bool InsertDeclaration(Environment* e, Ptree* d,

Ptree* key, void* client_data)
This inserts the declaration statemdrdt the beginning of the function body, and
also recordglient_data with key . The recorded client data last while the
function body is translated. This function retutnge if no client data is recorded
with key and the insertion succeeds.

e void* LookupClientData(Environment* e, Ptree* key)
This returns the client data associated viidly . If the client data is not recorded,
this function returnsil

7.8 Command Line Options

Class metaobjects can receive command line options. For example, if the user
specify the-M option:

% occ -Mclient -Mmode=tcp sample.cc

Then the class metaobjects can receive the command line ogfiens and
mode (the value idcp) by the following functions:

e static bool LookupCmdLineOption(char* option_name)

This returnstrue if the option specified byption_name is given from the
command line.

40

subclass—of

RN /_\\

~ Metaclass = Class = Point =----- po
: instance—
of

Figure 2: Instance-of Relationship

e static bool LookupCmdLineOption(char* key, char*& value)

This returnstrue if the option specified byption_name is given from the
command line. The value of the option is storedriiue . If the option value is
not given,value is nil

7.9 Error Message

The following functions reports an error that occurs during the source-to-source
translation.

¢ void ErrorMessage(Environment* env, char* message,

Ptree* code, Ptree* where)
This prints an error message. For examphessage is "wrong type:" and
code is aPtree metaobject representirigoint , then the printed messages is
something like this:

sample.cc:25: wrong type: Point

The file name and the line number point to the location of the code specified by
where . If where isnil , no file name or line number are not printed.

The first argumenénv can be omitted. In this case, the printed line number
may be wrong.

¢ void WarningMessage(Environment* env, char* message,

Ptree* name, Ptree* where)
This prints a warning message. The meaning of the arguments are the same as
ErrorMessage() . The first argumengénv can be omitted.

41

7.10 Metaclass for Class

Since OpenC++ is a self-reflective language, the meta-level programs are also in
OpenC++. They must be compiled by the OpenC++ compiler. Because of this self-
reflection, metaclasses also have their metaclasses. The metaclatstorand

its subclasses must betaclass . However, programmers do not have to explic-

itly declare the metaclass for their metaclasses because the subcla€$assof
inherit the metaclass froi@lass .

Metaclass makes it easy to define a subclassGifiss . It automatically
inserts the definition oMetaclassName() of that subclass and also generates
house-keeping code internally used by the compiler.

SinceMetaclass is a subclass oflass , its metaclass idetaclass it-
self. This relationship is illustrated in Figure 2.

42

8 Member Metaobjects

Member metaobjects provide the ability of introspection and source-code transla-
tion of the members. They can be obtained by calNitigMember() orLookupMember()
on a class metaobject. The following is the list of the member functions provided
by the member metaobjects.

8.1 Introspection

First, we show the member functions for introspection.

e Member(Member&)
This is a constructor to make a copy of a member metaobject.

e Ptree* Name()
This returns the member name.

e Ptree* ArgumentList()

This returns the formal argument list of the member. For example, if the member
isint f(int, char®) , then this function returns

[[lint] [nil]] , [[char] [*]I] . If the member is a data member, this
function returnsil

e Ptree* Arguments()

This returns the argument list of the member. UnlkeyumentList() , the
returned list does not include the types. It is a list of the argument names. If the
member isint f(int p, char* q) , then this function returnp , q]

Even if the argument name is not given in the argument list, it is automatically
filled by this function. In this case, the formal argument list of the member is also
changed to include that argument name. If the member is a data member, this func-
tion returnsnil

e Ptree* Memberlnitializers()

This returns the member initializers if the member is a constructor. Otherwise, it
returnsnil . For example, if the member is:

X::)}(() : p(3), q(1) {

Then this function returng [p ([3])] , [a ([1])]

43

e Ptree* FunctionBody()
This returns the function body if the member is a function. The returned text in-
cludes brace§ .

e int Nth()
If the member is thé -th member, this returns. Otherwise, if the member is not
declared, it returns -1.

¢ void Signature(Typelnfo& t)
This returns the type of the membertinIf the member is a member function, the
returned type is the function type.

e Class* Supplier()
This returns the class supplying this member. If the member is inherited from the
base class, then the returned class is that base class.

e bool IsConstructor()
This returngrue if the member is a constructor.

e bool IsDestructor()
This returndrue if the member is a destructor.

e bool IsFunction()
This returngrue if the member is a member function.

e bool IsPublic()
This returndrue if the member is gublic member.

e bool IsProtected()
This returngrue if the member is g@rotected member.

e bool IsPrivate()
This returndrue if the member is private member.

e bool IsStatic()
This returndrue if the member is &tatic member.

e bool IsMutable()
This returndrue if the member is anutable member.

44

e bool IsInline()
This returndrue if the member is anline member function.

e bool IsVirtual()
This returngrue if the member is &irtual member function.

e bool IsPureVirtual()
This returngrue if the member is a pureirtual member function.

OpenC++ allows syntax extensions for access specifiers and argument lists. The
following members are used for dealing with such syntax extensions.

e Ptree* GetUserAccessSpecifier()
This returns an user-defined access specifier for the member. For example, suppose
thatsync is a user-defined keyword:

class Window {
public:

void Move();
sync:
} void Resize();

ThenGetUserAccessSpecifier() called orResize() returngsync :]
The user-defined access specifier is effective until another access specifier appears.
For example:

class X {
public:

void f1(); /I public
sync:

void f2(); /I public, sync
private:

void g1(); /[private
sync:

void g2(); /I private, sync

The user-defined access specifiers are automatically eliminated. The programmer
does not have to be concerned about it.

e Ptree* GetUserMemberModifier()

45

This returns the member modifier for the member. If no member modifier is spec-
ified, this returnsnil . The member modifier is automatically eliminated. The
programmer does not have to be concerned about it.

¢ bool GetUserArgumentModifiers(PtreeArray& modifiers)

This computes user-defined type modifiers attached to the argument types. If suc-
cessful, it returndrue and stores the result imodifiers . The result is a
PtreeArray of user-defined type modifiers. Tlhethe element is one for the

i -th argument. If no modifier is specified, the elementiis . For example, if

ref is a user-defined type modifier,

class C {
public:
void f(ref int pl, int p2);

ThenGetUserArgumentModifiers() called orf returns an array [ref], nil }
All the user-defined type modifiers are automatically eliminated. The program-
mer does not have to be concerned about it.

8.2 Translation

The member metaobjects also provide functions for customizing the member. The
changes are not actually reflected on the source-code translatio@ hatigeMember()
or AppendMember() is called on the class metaobject.

e void SetName(Ptree* name)
This changes the member namenaime.

¢ void SetQualifiedName(Ptree* name)

This changes the member namentime. Unlike SetName() , this function sub-
stitutesname for the member name including the qualified class name. It is useful
in Class:: TranslateMemberFunction() . For example, if the member is:

void Rect::Enlarge(int rx, int ry) { ... }

Then,SetQualifiedName(Ptree::Make("Point::Move")) changes this
member to:

void Point::Move(int rx, int ry) { ... }

46

¢ void SetArgumentList(Ptree* arglist)
This changes the formal argument list of the member functiargtist

¢ void SetMemberlnitializers(Ptree* init)
This changes the member initializers of the constructamito .

¢ void SetFunctionBody(Ptree* body)
This changes the function body of the membebaoaly .

The member functions for introspection suchNesme() does not reflect the cus-
tomization in the results. For examphame() returns the original member name
even ifSetName() specifies a new name. To get the new value specified by the
above functions such &etName() , the following functions are used:

¢ void NewName()
This returns the new member name substituted for the original one.

¢ void NewArgumentList()
This returns the new argument list substituted for the original one.

¢ void NewMemberlnitializers()
This returns the new member initializers substituted for the original one.

¢ void NewFunctionBody()
This returns the new function body substituted for the original one.

47

Command Reference

NAME
occ — the Open C++ compiler

SYNOPSIS
occ [- [-s] [-VI [-v] [-c] [-E] [-n] [-p] [-P]
[-m file.nam@ [--regular-c++] [-I includedirectoryj
[-D namég= def]] [-d option
[-M option= valud] [-S metaclask
[-- C++compiler options[.0 and.a filed] sourcefile

DESCRIPTION
occ compiles an OpenC++ program into an object file. It first invokes the
C++ preprocessor with the predefined macrgpencxx and generates a
.occ file, then translates itinto & file according to the meta-level pro-
gram. Theii file is compiled by the back-end C++ compiler, and finally
ana.out file is produced. lfocc is run with the-c option, it generates a
.0 file but suppresses linking.

For example, to compile a base-level progsample.cc with the meta-
level programMyClass.mc , the user should do as follows:

% occ -m MyClass.mc

First,MyClass.mc should be compiled into shared librarigClass.so
andMyClass-init.so . The produced shared libraries must be under the
directory specified by D_LIBRARY_PATH Then, the user can compile the
base-level program:

% occ -- -0 sample sample.cc
If sample.cc requires a metacladdyClass , occ dynamically loads and

links MyClass.so andMyClass-init.so . Thensample.cc iscom-
piled according to the metaclaby/Class and an executable figample
is produced.

The separate compilation of meta-level programs is also supported. Suppose
thatMyClass is implemented byoo.mc andbar.mc . The user should
compile them as follows:

% occ -c -m foo.mc
% occ -c -m bar.mc

This producedoo.o , bar.o , andMyClass-init.so . Although the
second invocation afcc overridesMyClass-init.so produced by the

48

first invocation, this is not a problem. To get the shared libray,0 and
bar.o have to be linked by hand intdyClass.so by:
% occ -mMyClass foo.o0 bar.o

For the reason of efficiency, the user can statically link the meta-level pro-
gram with the OpenC++ compiler. To do this, the user must not specify the
-m option:

% occ -- -0 myocc opencxx.a MyClass.mc
First, MyClass.mc should be compiled and linked to the OpenC++ com-
piler. The command shown above produces the OpenC++ compiler that
MyClass.mc is embedded in.opencxx.a is the archive of the origi-
nal OpenC++ compiler. (Note: The Solaris and Linux users have to add the
-ldl option afteropencxx.a .)

Then, the produced compilenyocc is used to compile the base-level
program:

% myocc -- -0 sample sample.cc
This compilessample.cc and produces an executable Bmple .

OPTIONS

-D Define a macrmameasdef

-E Don't run the back-end C++ compiler. Stop after generating a
file.

-l Add adirectoryto the search path of thnclude directive.
-M Specify anoptionwith value It is passed to metaobjects.
-P Run the preprocessor again after translation (Unix only).

-S Load metaclasst the beginning. It enables to load a metaclass and
invoke Initialize() without themetaclass declaration. It is
usedful to callChangeDefaultMetaclass() onClass .

-V Show the version humber.

-C Suppress linking and producea file.

-d Passoptionto the preprocessor. For exampitd/MDd directs the
compiler to paséMDd to the preprocessor.

-l Print the list of statically loaded metaclasses.

-m Produce a shared library (8o file.) This is used to compile a
metaclass. Ifile_nameis specified, the name of the shared library is
file_nameso . If the -c option is specified togethencc produces a
.50 file, which should be linked by the user to be a shared library.

49

-n Suppress invoking the preprocessor.
-p Stop after the parsing stage. No translation is done.

-S Print the whole parse tree of the given source program. Don’t perform
translation or compilation. If no source file is givesgc reads from
the standard input.

-V Specify the verbose mode.

--regular-c++ Inhibit the extended syntax. This enables the key-
wordmetaclass to be used as a variable name. This option is useful
when parsing legacy code being not intended to translation. When this
option is used, the symbolopencxx is not defined.

- The following options are interpreted as options for the back-end C++
compiler. For example, if you type

occ -l.. -- -g foo.c

Then the-g option is passed to the C++ compiler. Note that these
options are not passed to the C++ preprocessor-Dhand-I options
need to be placed before .

FILES

file. {cc,C,c,cpp,cxx,mc } source file.

file.occ output file after C++ preprocessing.

file.ii output file after translation.

file.o object file.

file.so shared library dynamically loaded logc .

opencxx.a library to link with meta-level program.
NOTES

e While the C++ processor is running, the macropencxx is prede-
fined.

e The programs compiled bycc do not need any runtime libraries or
a garbage collector unless the meta-level program requires them at the
base level.
COPYRIGHT

Copyright(©1997-99 Shigeru Chiba. All Rights Reserved.
Copyright(©1995, 1996 Xerox Corporation. All Rights Reserved.

50

AUTHOR

Shigeru Chiba, University of Tsukuba, Japan.
Email: chiba@is.tsukuba.ac.jp

51

