
OpenC++ 2.5 Reference Manual

Shigeru Chiba

Institute of Information Science and Electronics
University of Tsukuba
Email: chiba@is.tsukuba.ac.jp

Copyright c©1997-99 by Shigeru Chiba. All Rights Researved.

1 Overview

OpenC++ is a toolkit for C++ translators and analyzers. It was designed to enable
the users to develop those tools without concerning tedious parts of the devel-
opment such as the parser and the type system. There are a number of tools that
OpenC++ facilitates the development of. For example, the users can easily develop
a C++ translator for implementing a language extension to C++ or for optimizing
the compilation of their class libraries. Moreover, OpenC++ is useful to develop
a source-code analyzer such as one for producing the class-inheritance graph of a
C++ program.

The programmer who want to use OpenC++ writes ameta-levelprogram, which
specifies how to translate or analyze a C++ program. It is written in C++ and de-
fines a small number of classes. Then the meta-level program is compiled by the
OpenC++ compiler and (dynamically or statically) linked to the compiler itself as
a compiler plug-in. The resulting compiler translates or analyzes a source pro-
gram (it is called abase-levelprogram for distinction) as the meta-level program
specifies. See Figure 1.

meta-level
program .cc

base-level
program .cc

C++ compiler .oOpenC++ compiler

C++ compilerOpenC++ compiler .so

dynamic load

Figure 1: Overview (The meta-level program is dynamically linked)

The meta-level program is written according to the programming interface
called the OpenC++ MOP (Metaobject Protocol.) Through this interface, the inter-
nal structure of the compiler is exposed to the programmers with object-oriented
abstraction.

The base-level program is first preprocessed by the C++ preprocessor, and then
divided into small pieces of code. These pieces of code are translated by class
metaobjects and assembled again into a complete C++ program. In the OpenC++
MOP, the pieces of code is represented byPtree metaobjects in the form of parse
tree (that is, linked list). Although the metaobjects are identical to regular C++
objects, they exist in the compiler and represent a meta aspect of thebase-level
program. This is why they are not simply calledobjectsbutmetaobjects.

2

The class metaobject is selected according to the static type of the translated
piece of code. For example, if the piece of code is a member call on aPoint
object:

p0->move(3, 4)

Then it is translated by the class metaobject forPoint (the type ofp.) It is given
to the class metaobject in the form of parse tree and translated, for example, into
this;

(++counter, p0->move(3, 4))

This translation is similar to the one by Lisp macros, but it is type-oriented. The
translation by the metaobjects is applied not only a member call but also other
kinds of code involved with the C++ class system, such as data member access and
class declaration.

The programmer who wants to customize the source-to-source translation writes
a meta-level program to define a new class metaobject. This class metaobject is
associated with a particular class in the base-level program and controls the trans-
lation of the code involved with the class. Thus the translation is applied only to
the particular class and the rest of the code involved with the other classes remains
as is.

The class metaobject can use other aspects of the base-level program during
the source-code translation. In addition to the parse tree, it can access the seman-
tic information such as static types and class definitions. These various aspects of
the program facilitates the implementation of complex source-code translation and
analysis. Furthermore, the OpenC++ MOP enables syntax extensions so that the
base-level programmers can write annotations to help the translation or the analy-
sis.

The meta architecture of OpenC++ might look very different from the archi-
tecture of other reflective languages. However, note that the class metaobject still
controls the behavior of the base-level objects, which are instances of the class.
The uniqueness of the OpenC++ MOP is only that the class metaobject does not
interpret the base-level program in the customized way, but rather translates that
program at compile time so that the customized behavior is implemented. The
readers will find that, as in other reflective languages, the class metaobject has a
member function for every basic action of the object, such as member calls, data
reading/writing, object creation, and so forth, for customizing the object behavior.

3

2 Base-Level Language (OpenC++)

This section addresses the language specification of OpenC++. OpenC++ is iden-
tical to C++ except two extensions. To connect a base-level program and a meta-
level program, OpenC++ introduces a new kind of declaration into C++. Also, new
extended syntax is available in OpenC++ if the syntax is defined by the meta-level
program.

2.1 Base-level Connection to the MOP

OpenC++ provides a new syntax for metaclass declaration. This declaration form
is the only connection between the base level and the meta level. Although the
default metaclass isClass , programmers can change it by using this declaration
form:

• metaclass metaclass-name [class-name[(meta-arguments)]] ; 1

This declares the metaclass for a class. It must appear before the class is defined.
If the class name is not specified, this declaration means nothing except that the
metaclass is loaded into the compiler.meta-argumentsis a sequence of identifiers,
type names, literals, and C++ expressions surrounded by() . The elements must
be separated by commas. The identifiers appearing inmeta-argumentsdo not have
to be declared in advance. What should be placed atmeta-argumentsis specified
by the metaclass.

The code shown below is an example of metaclass declaration:

metaclass PersistentClass Point;
class Point {
public:

int x, y;
};

The metaclass forPoint is PersistentClass . This syntax was chosen so
that it looks like a variable declaration such as:

class Point p0;

The former declaration defines a class metaobjectPoint as an instance of meta-
classPersistentClass , and the latter defines an objectp0 as an instance of
classPoint .

1[] means an optional field.

4

2.2 Syntax Extensions

The extended syntax described here is effective if programmers define it by the
MOP. By default, it causes a syntax error. To make it available, the programmers
must register a new keyword, which is used in one of the following forms:

• Modifier keyword[(function-arguments)]

A keyword can be registered to lead a modifier. It may appear in front of class dec-
larations, thenew operator, or function arguments. For example, these statements
are valid:

distribute class Dictionary { ... };
Point* p = remote(athos) new Point;
void append(ref int i, int j);

Here,distribute , remote , andref are registered keywords.
Also, a modifier can be placed in front of a member declaration. For example,

class Point {
public:

sync int x, y;
};

The keywordsync is a modifier.

• Access Specifier keyword[(function-arguments)] :

Programmers may define a keyword as a member-access specifier. It appears at
the same place that the built-in access specifier such aspublic can appears. For
example, ifafter is a user-defined keyword, then programmers may write:

class Window {
public:

void Move();
after:

void Move() { ... } // after method
}

• While-style Statement
pointer-> keyword(expression){ statements}
object. keyword(expression){ statements}
class-name:: keyword(expression){ statements}

A user-defined keyword may lead something like thewhile statement. In the

5

grammar, that is not a statement but an expression. It can appear at any place
where C++ expressions appear.expressionis any C++ expression. It may be empty
or separated by commas like function-call arguments. Here is an example of the
while-style statement:

Matrix m2;
m2.forall(e){

e = 0;
}

A user-defined keyword can also lead other styles of statements.

• For-style Statement
pointer-> keyword(expr ; expr ; expr){ statements}
object. keyword(expr ; expr ; expr){ statements}
class-name:: keyword(expr; expr; expr){ statements}

The for-style statement takes three expressions like thefor statement. Except that,
it is the same as the while-style statement.

• Closure Statement
pointer-> keyword(arg-declaration-list){ statements}
object. keyword(arg-declaration-list){ statements}
class-name:: keyword(arg-declaration-list){ statements}

The closure statement takes an argument declaration list instead of an expression.
That is the only difference from the while-style statement. For example, program-
mers may write something like this:

ButtonWidget b;
b.press(int x, int y){

printf("pressed at (%d, %d)\n", x, y);
}

This might be translated into this:

void callback(int x, int y){
printf("pressed at (%d, %d)\n", x, y);

}
:

ButtonWidget b;
b.press(callback); // register a callback function

6

2.3 Loosened Grammar

Besides extended syntax, OpenC++’s grammar is somewhat loosened as compared
with C++’s grammar. For example, the next code is semantically wrong in C++:

Point p = { 1, 3, 5 };

The C++ compiler will report thatp cannot be initialized by{ 1, 3, 5 } . Such
an aggregate can be used only to initialize an array. The OpenC++ compiler simply
accepts such a semantically-wrong code. It ignores semantical correctness expect-
ing that the code will be translated into valid C++ code.

7

3 Metaobject Protocol (MOP)

At the meta level, the (base-level) programs are represented by objects of a few pre-
defined classes (and their subclasses that programmers define). These objects are
calledmetaobjectsbecause they aremetarepresentation of the programs. Source-
to-source translation from OpenC++ to C++ is implemented by manipulating those
metaobjects.

The following several sections show details of such metaobjects. They reflect
various aspects of programs that are not accessible in C++. Although most of
metaobjects provide means of introspection, some metaobjects represent a behav-
ioral aspect of the program and enables to control source-to-source translation of
the program. Here is the list of metaobjects:

• Ptree metaobjects:

They represent a parse tree of the program. The parse tree is implemented as a
nested-linked list.

• Environment metaobjects:

They represent bindings between names and types. Since this MOP is a compile-
time MOP, the runtime values bound to names are not available at the meta level.

• TypeInfo metaobjects:

They represent types that appear in the program. The types include derived types
such as pointer types and reference types as well as built-in types and class types.

• Class metaobjects:

As well as they represent class definitions, they control source-to-source translation
of the program. Programmers may define subclasses ofClass in order to tailor
the translation.

• Member metaobjects:

They represent class members. They inform whether the member is a constructor,
an inline function, a data member, a public member, or so forth.

DistinguishingTypeInfo metaobjects andClass metaobjects might look like
wrong design. But this distinction is needed to handle derived types.TypeInfo
metaobjects were introduced to deal with derived types and fundamental types by
using the same kind of metaobjects.

8

4 Representation of Program Text

Program text is accessible at the meta level in the form of parse tree. The parse tree
is represented by aPtree metaobject. It is implemented as a nested linked-list
of lexical tokens — the S expressions in the Lisp terminology. For example, this
piece of code:

int a = b + c * 2;

is parsed into:

[[static] [int] [[a = [b + [c * 2]]]] ;]

Here,[] denotes a linked list. Note that operators such as= and+ make sublists.
The sublists and their elements (that is, lexical tokens such asa and=) are also
represented byPtree metaobjects.

4.1 Basic Operations

To manipulate linked lists, the MOP provides manystatic member functions on
Ptree , which are familiar to Lisp programmers:

• static Ptree* First(Ptree* lst)
This returns the first element oflst .

• static Ptree* Rest(Ptree* lst)
This returns the rest oflst except the first element, that is, thecdr field of lst .

• static Ptree* Second(Ptree* lst)
This returns the second element oflst.

• static Ptree* Third(Ptree* lst)
This returns the third element oflst.

• static Ptree* Nth(Ptree* lst, int n)
This returns then-th element oflst . Nth(lst, 0) is equivalent toFirst(lst) .

• static Ptree* Last(Ptree* lst)
This returns the last cons cell, which is a list containing only the last element of
lst .

9

• static Ptree* ListTail(Ptree* lst, int k)
This returns a sublist oflst obtained by omitting the firstk elements.ListTail(lst, 1)
is equivalent toRest(lst) .

• static int Length(Ptree* lst)
This returns the number of the elements oflst . If lst is not a list, then this
returns a negative number.

• static Ptree* Cons(Ptree* a, Ptree* b)
This returns a cons cell whosecar field isa and whosecdr is b.

• static Ptree* List(Ptree* e1, Ptree* e2, ...)
This returns a list whose elements aree1 , e2 , ... List() returns a null listnil .

• static Ptree* Append(Ptree* lst1, Ptree* lst2)
This concatenateslst1 andlst2 . It returns the resulting list.

• static Ptree* CopyList(Ptree* lst)
This returns a new list whose elements are the same aslst ’s.

• static Ptree* ReplaceAll(Ptree* lst, Ptree* orig, Ptree* subst)
This returns a list in which all occurrences oforig in lst are replaced with
subst . This is not a destructive operation.

• static bool Eq(Ptree* lst, char x)
• static bool Eq(Ptree* lst, char* x)
• static bool Eq(Ptree* lst, Ptree* x)
This returnstrue if lst andx are equal. Ifx is Ptree* , this determines the
equivalence by comparing the pointers.

• static bool Equal(Ptree* x, Ptree* y)
This recursively comparesx andy and returnstrue if they are equivalent.

Furthermore, the following member functions are available onPtree metaob-
jects:

• bool IsLeaf()
This returnstrue if the metaobject indicates a lexical token.

• void Display()

10

This prints the metaobject on the console for debugging. Sublists are surrounded
by [and] .

• char* ToString()
This converts the parse tree into a character string and returns it.

• int Write(ostream& out)
This writes the metaobject to the file specified byout . Unlike Display() , sub-
lists are not surrounded by[and] . This member function returns the number of
written lines.

• ostream& operator <<(ostream& s, Ptree* p)
The operator<< can be used to write aPtree object to an output stream. It is
equivalent toWrite() in terms of the result.

The parse tree is basically a long list of the lexical tokens that appear in the pro-
gram although some of them are grouped into sublists. The order of the elements
of that list is the same as the order in which the lexical tokens appear. But if some
fields such as the type field are omitted in the program, thennil is inserted at
those places. For example, if the return type of a function declaration is omitted as
follows:

main(int argc, char** argv){ }

thennil list is inserted at the head of the list:

[nil nil [main ([[[int] [argc]] , [[char] [* * argv]]])] [{
nil

}]

Since the function body is also omitted,nil list is inserted between{ and} .

4.2 Construction

Programmers can makePtree metaobjects. Because the MOP provides a conser-
vative garbage collector, they don’t need to care about deallocation of the metaob-
jects. The nextstatic member functions onPtree are used to make aPtree
metaobjects.

• static Ptree* Make(char* format, [Ptree* sublist, ...])
This makes aPtree metaobject according to theformat . Theformat is a null-
terminated string. All occurrences of%c (character),%d(integer),%s (character

11

string), and%p(Ptree) in theformat are replaced with the values following the
format . %%in the format is replaced with%.

• static Ptree* GenSym()
This generates a unique symbol name (aka identifier) and returns it. The returned
symbol name is used as the name of a temporary variable, for example.

The Ptree metaobject returned byMake() is not a real parse tree.2It is just a
unparsed chunk of characters. Although programmers can usePtree metaobjects
generated byMake() as they use otherPtree metaobjects, the structure of those
metaobjects does not reflect the code they represent.

UsingMake() , programmers can easily generate any piece of code to substi-
tute for part of the original source code. For example, supposearray_name is
xpos andoffset is 3. The following function call:

Ptree::Make("%p[%d]", array_name, offset)

makes aPtree metaobject that represents:

xpos[3]

%psimply expand a givenPtree metaobject as a character string. Thus program-
mers may write something like:

Ptree::Make("char* GetName(){ return \"%p\"; }",
array_name);

Note that a double quote" must be escaped by a backslash\ in a C++ string.
\"%p\" makes a string literal. The function call above generates the code below:

char* GetName(){ return "xpos"; }

Although Make() follows the oldprintf() style, programmers can also
use a more convenient style similar to Lisp’s backquote notation. For example,

Ptree::Make("%p[%d]", array_name, offset)

The expression above can be rewritten usingqMake() as follows:

Ptree::qMake("‘array_name‘[‘offset‘]")

2At least, for the time being.

12

Note that the “backqouted” C++ expressionsarray_name andoffset are di-
rectly embedded in the C++ string. Their occurrence are replaced with the value
of the expression. This replacement cannot be implemented in regular C++. It is
implemented by the metaclass forPtree .

• static Ptree* qMake(char* text)
This makes aPtree metaobject that represents thetext . Any C++ expression
surrounded by backquotes‘ can appear intext . Its occurrence is replaced with
the value denoted by the expression. The type of the expression must bePtree* ,
int , or char* .

Except the difference in the notation,qMake() is equivalent toMake() . Pro-
grammers can choose either one they prefer at any place.

4.3 Pattern Matching

The MOP provides astatic member function onPtree metaobjects for pattern
matching.

• static BOOL Match(Ptree* list, char* pattern,
[Ptree** sublist, ...])

This compares thepattern andlist . If they match, this function returnstrue
and binds thesublist s to appropriate sublists of thelist , as specified by the
pattern . Note that the type ofsublist is pointer toPtree* .

For example, the functionMatch() is used as follows:

if(Ptree::Match(expr, "[%? + %?]", &lexpr, &rexpr))
cout << "this is an addition.";

else if(Ptree::Match(expr, "[%? - %?]", &lexpr, &rexpr))
cout << "this is a subtraction.";

else
cout << "unknown";

The pattern[%? + %?] matches a linked list that consists of three elements if the
second one is+. If an expressionexpr matches the pattern,lexpr gets bound to
the first element ofexpr andrexpr gets bound to the third element.

The pattern is a null-terminated string. SinceMatch() does not under-
stand the C++ grammar, lexical tokens appearing in the pattern must be separated
by a white space. For example, a patterna+b is regarded as a single token. The
pattern is constructed by these rules:

13

1. A word (characters terminated by a white space) is a pattern that matches a
lexical token.

2. %[, %], and%%are patterns that match[,] , and%.

3. [] is a pattern that matches a null list (nil).

4. [pat1 pat2...] is a pattern that matches a list ofpat1, pat2, ...

5. %* is a pattern that matches any token or list.

6. %?is a pattern that matches any token or list. The matched token or list is
bound tosublist .

7. %_is a pattern that matches the rest of the list (thecdr part).

8. %r is a pattern that matches the rest of the list. The matched list is bound to
sublist .

4.4 Reifying Program Text

If a Ptree metaobject represents a literal such as an integer constant and a string
literal, we can obtain the value denoted by the literal.

• static BOOL Reify(unsigned int& value)
This returnstrue if the metaobject represents an integer constant. The denoted
value is stored invalue . Note that the denoted value is always a positive number
because a negative number such as-4 generates two distinct tokens such as- and
4.

• static BOOL Reify(char*& string)
This returnstrue if the metaobject represents a string literal. A string literal is a
sequence of character surrounded by double quotes" . The denoted null-terminated
string is stored instring . It does not include the double quotes at the both ends.
Also, the escape sequences are not expanded.

Note: the character string returned byReify() is allocated in the heap area.
However, because the MOP provides a conservative garbage collector, program-
mers do not need to deallocate the string by themselves.

14

4.5 Support Classes

The MOP provides two support classesPtreeIter andPtreeArray to help
programmers to deal withPtree objects.PtreeIter is useful to perform iter-
ation on a list ofPtree objects. Suppose thatexpr is a list:

PtreeIter next(expr);
Ptree* p;
while((p = next()) != nil){

// compute on p
}

Each element ofexpr is bound top one at a time. The operator() onPtreeIter
objects returns the next element. Programmers may callPop() instead of the oper-
ator() . Since the two functions are equivalent, the program above can be rewritten
to be:

PtreeIter next(expr);
Ptree* p;
while((p = next.Pop()) != nil){

// compute on p
}

If the reader prefers thefor -loop style, she may also say:

for(PtreeIter i = expr; !i.Empty(); i++){
// compute on *i

}

Although this interface is slightly slower, it distinguishes the end of the list and a
nil element. Ifexpr includesnil , Pop() cannot correctly detect the end of
the list.

Another support class isPtreeArray for dealing with an unbounded array
of Ptree objects. It is used as follows (suppose thatexpr is aPtree object):

PtreeArray a; // allocate an array
a.Append(expr); // append expr to the end of the array
Ptree* p = a[0]; // get the first element
Ptree* p2 = a.Ref(0); // same as a[0]
int n = a.Number(); // get the number of elements
Ptree* lst = a.All(); // get a list of all the elements
a.Clear(); // make the array empty

15

5 Representation of Environments

Environment metaobjects represent bindings between names and types. If the
name denotes a variable, it is bound to the type of that variable. Otherwise, if the
name denotes a type, it is bound to the type itself. Programmers can look up names
by the following member functions onEnvironment metaobjects:

• bool Lookup(Ptree* name, bool& is_type_name, TypeInfo& t)
This looks up the givenname into the environment and returnstrue if found. The
type ofname is returned att . If the name is a type name,is_type_name is set
to true . If it is a variable name,is_type_name is set tofalse .

• bool Lookup(Ptree* name, TypeInfo& t)
This is an alias ofLookup(Ptree*, bool&, TypeInfo&) described above.

• Class* LookupClassMetaobject(Ptree* class_name)
This looks up the givenclass_name and returns theClass metaobject of the
type. If theclass_name is not found, this function returnsnil (class_name
may be a variable name.)

• bool RecordVariable(char* name, Class* metaobject)
This records a variablename in the environment. The type of that variable is a
class type specified bymetaobject .

• bool RecordPointerVariable(char* name, Class* metaobject)
This records a variablename in the environment. The type of that variable is a
pointer type to the class specified bymetaobject .

• void Dump()
This is for debugging and prints the elements in the inner-most environment on
stderr.

• void Dump(int i)
This is for debugging and prints the elements in thei -th outer environment on
stderr.Dump(0) is equivalent toDump() .

16

6 Representation of Types

TypeInfo metaobjects represent types. Because C++ deals with derived types
such as pointer types and array types,Class metaobjects are not used for primary
representation of types.TypeInfo metaobjects do not treattypedef ed types as
independent types. They are treated just as aliases of the original types.

The followings are member functions onTypeInfo metaobjects:

• TypeInfoId WhatIs()
This returns anenumconstant that corresponds to the kind of the type:BuiltInType ,
ClassType (includingclass , struct , andunion), EnumType, TemplateType ,
PointerType , ReferenceType , PointerToMemberType ,
ArrayType , FunctionType , TemplateType , or UndefType (the type is
unknown).

• Ptree* FullTypeName()
This returns the full name of the type if the type is a built-in type, a class type, an
enum type, or a template class type. Otherwise, this returnsnil . For example, if
the type is a nested classY defined within a classX , this returnsX::Y .

• bool IsConst()
This returnstrue if the type is const.

• bool IsVolatile()
This returnstrue if the type is volatile.

• uint IsBuiltInType()
This returns a bit field that represents what the built-in type is. If the type is not
a built-in type, it simply returns0 (false). To test the bit field, these masks
are available:CharType , IntType , ShortType , LongType , SignedType ,
UnsignedType , FloatType , DoubleType , LongDoubleType ,
BooleanType , andVoidType . For example,IsBuiltInType() & Long-
Type is true if the type islong , unsigned long , or signed long .

• bool IsPointerType()
This returnstrue if the type is a pointer type.

• bool IsReferenceType()
This returnstrue if the type is a reference type.

17

• bool IsFunction()
This returnstrue if the type is a function type. To obtain the type of the returned
value, examine the dereferenced type of the function type.

• bool IsArray()
This returnstrue if the type is an array type. To obtain the type of the array com-
ponents, examine the dereferenced type of the array type.

• bool IsPointerToMember()
This returnstrue if the type is a pointer to member.

• bool IsTemplateClass()
This returnstrue if the type is a class template.

• bool IsEnum()
This returnstrue if the type is an enum type.

• bool IsEnum(Ptree*& spec)
This returnstrue if the type is an enum type. ThePtree metaobject represent-
ing theenum declaration is stored inspec .

• bool IsClass(Class*& metaobject)
This returnstrue if the type is a class type. TheClass metaobject representing
the class type is stored inmetaobject .

• Class* ClassMetaobject()
This returns aClass metaobject that represent the type. If the type is not aclass
type, it simply returnsnil .

TheTypeInfo metaobjects also provide methods for computing the dereferenced
type. For example, those methods are used to get the type of the value that a pointer
points to. Suppose that the type of the pointer isint* . If the dereferenced type of
that pointer type is computed, thenint is obtained.

• void Dereference(TypeInfo& t)
This returns the dereferenced type int . If dereferencing is not possible, the
Undef type is returned int .

• void Dereference()
This is identical toDereference(TypeInfo&) except that theTypeInfo

18

metaobject itself is changed to represent the dereferenced type.

• void Reference(TypeInfo& t)
This returns the referenced type int . For example, if the type isint* , then the
referenced type isint** .

• void Reference()
This is identical toReference(TypeInfo&) except that theTypeInfo metaob-
ject itself is changed to represent the referenced type.

The dereferenced type of a function type is the type of the return value. For exam-
ple, if the function type isvoid f(char) , then the dereferenced type isvoid
. If no return type is specified (e.g. constructors), the dereferenced type of the
function type is “no return type.”

• bool IsNoReturnType()
This returnstrue if the return type of the function is not specified.

The TypeInfo metaobjects also provide a method to obtain the types of func-
tion arguments.

• int NumOfArguments()
This returns the number of the arguments. If the type is not a function type, then it
returns -1.

• bool NthArgument(int nth, TypeInfo& t)
If the type isFunctionType , this returns the type of thenth (≥ 0) argument
in t . If the type is notFunctionType or thenth argument does not exist, this
function returnsfalse . If the nth argument is... (ellipses), then the returned
type is an ellipsis type (see below.)

• bool IsEllipsis()
This returnstrue if the type is an ellipsis type.

Finally, we show a convenient method for constructing aPtree metaobject that
represents the declaration of a variable of the type.

• Ptree* MakePtree(Ptree* varname = nil)
This makes aPtree metaobject that represents the declaration (or a function) of
a variable of the type. For example, if the type is pointer to integer, this returns

19

[int * varname] . varname may benil .

If the type is a function type,MakePtree() returns a function prototype match-
ing that type. The argument names in the prototype is omitted. To construct a
function prototype including argument names, programmers need to write as fol-
lows. Suppose thatftype is the type of the function,atype is the type of the
argument, the function name isSet , and the argument name iswidth :

Ptree* arg = atype.MakePtree(Ptree::Make("width"));
Ptree* func = Ptree::qMake("Set(‘arg‘)");
ftype.Dereference();
Ptree* proto = ftype.MakePtree(func); // function prototype

20

7 Class Metaobjects

Class metaobjects are the most significant metaobjects of the MOP. Although other
metaobjects only represent a structural aspect of the program, the class metaobjects
not only represent such a structural aspect but also allow programmers to define a
subclass and alter the behavior of the program.

The default class for the class metaobjects isClass , which provides member
functions for accessing the class definition. To alter a behavioral aspect of the class,
the programmer define a subclass ofClass that overridesvirtual functions
controlling source-to-source translation involved with the class.

7.1 Selecting a Metaclass

In general, the class of a metaobject is selected by themetaclass declaration at
the base level. For example:

metaclass PersistentClass Point;

declares that the metaclass forPoint is PersistentClass . This means that
the compiler instantiatesPersistentClass and makes the instantiated object
be the class metaobject representingPoint . SincePersistentClass is a
regular C++ class but its instance is a class (metaobject),PersistentClass is
called “metaclass”. This might look weird, but regard a class metaobject as being
identical to the class.

Programmers may specify a metaclass in a way other than themetaclass
declaration. The exact algorithm to select a metaclass is as described below:

1. The metaclass specified by themetaclass declaration.

2. The metaclass specified by the keyword attached to the class declaration if
exists.

3. Or else, the metaclass for the base classes. If they are different, an error is
caused.

4. Otherwise, the default metaclassClass is selected.

Programmers may specify a metaclass by a user-defined keyword. For example,

distribute class Dictionary { ... };

21

This means that the metaclass associated with the user-defined keyworddistribute
is selected forDictionary . If there is also a metaclass declaration forDictionary ,
then an error occurs.

Although the default metaclass isClass , programmers can change it to an-
other metaclass:

• static void ChangeDefaultMetaclass(char* name)
This changes the default metaclass toname. It should be called byInitialize()
defined for a metaclass loaded by the-S option at the beginning. Otherwise, that
metaclass should be explicitly loaded by themetaclass declaration, after which
the new default metaclass is effective.

7.2 Constructor

Class metaobjects may receive a meta argument when they are initialized. The
meta argument is specified by programmers, for example, as follows:

metaclass PersistentClass Point("db", 5001);

ThePtree metaobject["db" , 5001] is a meta argument to the class metaob-
ject for Point . Also, the programmers may specify a meta argument in this syn-
tax:

distribute("db", 5001) class Dictionary { ... };

The user-defined keyworddistribute can lead a meta argument. The class
metaobject forDictionary receives the same meta argument that the class metaob-
ject for Point receives in the example above.

The member functionInitializeInstance() on Class (and its sub-
classes) is responsible to deal with the meta argument. By default, the meta argu-
ment is simply ignored:

• Class()
This constructor performs nothing. The initialization is performed by
InitializeInstance() invoked just after the constructor. For this reason,
the member functions supplied byClass are not executable in the constructors of
the subclasses ofClass .
Note: only the OpenC++ compiler can call this constructor. The user programs
should not call it.

22

• void InitializeInstance(Ptree* definition, Ptree* meta_arg)
This is automatically invoked just after the constructor is invoked. It initializes the
data members of the class metaobject and processes the meta arguments.definition
is aPtree metaobject representing the class declaration. If a meta argument is not
given,meta_arg isnil . This member function is notoverridable; InitializeInstance()
of the subclasses ofClass must call the base-class’esInitializeInstance()
at thebeginning.
Note: This has been separeted from the constructor. Otherwise, the constructor
of Class would take two arguments and thus all the metaclasses have to have a
constructor just for passing the arguments to the constructor ofClass .

Note: only the OpenC++ compiler can call this member function. The user
programs should not call it.

Another constructor is provided for the programmers to produce a new class. This
is an example of the use of this constructor:

void MyClass::TranslateClass(Environment* e)
{

Member m;
Class* c = new Class(e, "Bike");
LookupMember("move", m);
c->AppendMember(m);
AppendAfterToplevel(e, c);

}

A new class namedBike is created, a member namedmove is retrieved from the
class represented by this class metaobject, and the retrieved member is copied to
that new class. The created classBike is then inserted in the source code after the
declaration of the class represented by this class metaobject.

• Class(Environment* e, char* name)
This constructor creates a class with the givenname. The created class has no
member. If this constructor is invoked,InitializeInstance() is not called.
No subclass ofClass can inherit or invoke this constructor.

• Class(Environment* e, Ptree* name)
This constructor creates a class with the givenname. The created class has no
member. If this constructor is invoked,InitializeInstance() is not called.
No subclass ofClass can inherit or invoke this constructor.

• void InsertBeforeToplevel(Environment* e, Class* c)

23

This inserts the class specified by the metaobjectc just before the toplevel decla-
ration.

• void AppendAfterToplevel(Environment* e, Class* c)
This appends the class specified by the metaobjectc just before the toplevel decla-
ration.

7.3 Introspection

Since a class metaobject is the meta representation of a class, programmers can ac-
cess details of the class definition through the class metaobject. The followings are
member functions on class metaobjects. The subclasses ofClass cannot override
them.

• Ptree* Name()
This returns the name of the class.

• Ptree* BaseClasses()
This returns the base classes of the class. For example, if the class declaration is:

class C : public A, private B { ... };

Then,BaseClasses() returns aPtree metaobject:

[: [public A] , [private B]]

• Ptree* Members()
This returns the body of the class declaration. It is a list of member declarations. It
does not include{ and} .

• Ptree* Definition()
This returns thePtree metaobject representing the whole class declaration.

• char* MetaclassName()
This returns the name of the metaclass.

• Class* NthBaseClass(int n)
This returns then-th (≥ 0) base class.

24

• Ptree* NthBaseClassName(int n)
This returns the name of then-th (≥ 0) base class.

• bool IsSubclassOf(Ptree* class_name)
This returnstrue if the class is a subclass ofclass_name .

• bool IsImmediateSubclassOf(Ptree* class_name)
This returnstrue if the class is an immediate subclass ofclass_name .

• bool NthMember(int n, Member& m)
This returnstrue if the n-th (≥ 0) member, including data members and mem-
ber functions, exists. The member metaobject representing then-th member is
returned inm. If the class is a subclass, the member is an inherited one from the
base class.

• bool LookupMember(Ptree* name, Member& m, int i = 0)
This returnstrue if the member namedname exists. The member metaobject
representing that member is returned atm. The member may be an inherited one. If
there are more than one members namedname, thei -th (≥ 0) member is returned.

• bool LookupMember(Ptree* name)
This returnstrue if the member namedname exists. The member may be an
inherited one.

• bool LookupMember(char* name, Member& m, int i = 0)
This returnstrue if the member namedname exists. The member metaobject
representing that member is returned atm. The member may be an inherited one. If
there are more than one members namedname, thei -th (≥ 0) member is returned.

• bool LookupMember(char* name)
This returnstrue if the member namedname exists. The member may be an
inherited one.

7.4 Translation

Class metaobjects control source-to-source translation of the program. Expressions
involving a class are translated from OpenC++ to C++ by a member function on

25

the class metaobject.3 Programmers may define a subclass ofClass to override
such a member function to tailor the translation.

The effective class metaobject that is actually responsible for the translation is
thestatic type of the object involved by the expression. For example, suppose:

class Point { public: int x, y; };
class ColoredPoint : public Point { public: int color; };

:
Point* p = new ColoredPoint;

Then, an expression for data member read,p->x , is translated by the class metaob-
ject for Point because the variablep is a pointer to notColoredPoint but
Point . Although this might seem wrong design, we believe that it is a reasonable
way since only static type analysis is available at compile time.

7.4.1 Class Definition

The class definition is translated byTranslateClass() . For example, if a
member functionf() is renamedg() , the member functionTranslateClass()
should be overridden to be this:

void MyClass::TranslateClass(Environment* e)
{

Member m;
LookupMember("f", m);
m.SetName(Ptree::Make("g"));
ChangeMember(m);

}

First, the member metaobject forf() is obtained and the new nameg() is given to
that member metaobject. Then, this change is reflected on the class byChangeMember() .
The classClass provides several member functions, such asChangeMember() ,
for translating a class definition. Programmers can overrideTranslateClass()
to call these functions and implement the translation they want.

• void TranslateClass(Environment* env)
This may call the member functions shown below and translate the declaration of
the class.
— Default implementation byClass
This performs nothing.

3In the current version, the translated code is not recursively translated again. So the metaob-
jects have to translate code from OpenC++ to C++ rather than from OpenC++ to (less-extended)
OpenC++. This limitation will be fixed in future.

26

• void RemoveClass()
This removes the whole declaration of the class from the source code.

• void ChangeName(Ptree* new_name)
This changes the name of the class. Note that this member function only substitutes
new_name for the identifier following theclass keyword in the declaration. The
constructors or any other occurence of the class name are not changed.

• void ChangeBaseClasses(Ptree* base_classes)
This replaces the base-classes field of the class declaration with the givenbase_class .

• void RemoveBaseClasses()
This removes the base classes from the class declaration. The class does not inherit
other classes after the translation.

• void AppendBaseClass(Class* c, int specifier = Public,
bool is_virtual = false)

This appends a given classc to the list of the base classes.specifier is
either Class::Public , Class::Protected , or Class::Private . If
is_virtual is true , then the appended base class isvirtual .

• void AppendBaseClass(Ptree* class_name, int specifier = Pub-
lic,

bool is_virtual = false)
This appends a given class namedclass_name to the list of the base classes.
specifier is eitherClass::Public , Class::Protected , orClass::Private .
If is_virtual is true , then the appended base class isvirtual .

• void AppendBaseClass(char* class_name, int specifier = Pub-
lic,

bool is_virtual = false)
This appends a given class namedclass_name to the list of the base classes.
specifier is eitherClass::Public , Class::Protected , orClass::Private .
If is_virtual is true , then the appended base class isvirtual .

• void ChangeMember(Member& changed_member)
This alter a member according tochanged_member . The member metaobject
changed_member must be the object returned byLookupMember() . Note
that the change of the member metaobject is not reflected until this member func-

27

tion is called.

• void RemoveMember(Member& removed_member)
This removes the member specified byremoved_member . The member metaob-
ject removed_member must be the object returned byLookupMember() .

• void AppendMember(Member& added_member,
int specifier = Public)

This appends a new member to the class.specifier is eitherClass::Public ,
Class::Protected , or Class::Private . This member function is used
to append a member similar to an existing one. For example,added_member
may be the object returned byLookupMember() and calledSetName() on to
change the member name.

• void AppendMember(Ptree* text)
This insertstext after the member declarations in the original class declaration.
text can be not only a member declaration but also a nested class declaration, an
access specifier, and any kind of program text.

The implementation of member functions is translated by
TranslateMemberFunction() . For example,

void Point::Move(int rx, int ry)
{

x += rx;
y += ry;

}

To translate this function implementation, the compiler calls
TranslateMemberFunction() on the class metaobject forPoint . The ar-
guments are an environment and a member metaobject forMove() . If this mem-
ber metaobject is changed by member functions such asSetName() , the change
is reflected on the program. Unlike class declarations, no explicit function call for
the reflection is not needed. For example,

void MyClass::TranslateMemberFunction(Environment* env, Mem-
ber& m)
{

m.SetFunctionBody(Ptree::Make("{}"));
}

This customizes the member function so that it has an empty body.

28

• void TranslateMemberFunction(Environment* env, Member& m)
This translates the implementation of a member function specified bym. The com-
piler does not call this function if the member function is inlined in the class dec-
laration. For example,

class Point {
public:

void Reset() { x = y = 0; }
void Move(int, int);
int x, y;

};
inline void Point::Move(int rx, int ry) { ... }

TranslateMemberFunction() is called only forMove() . The implemen-
tation ofReset() can be translated byTranslateClass() . Note that, even if
the implementation ofMove() is translated byTranslateMemberFunction() ,
the member declaration ofMove() in the class declaration is not translated. It
needs to be explicitly translated inTranslateClass() .
— Default implementation byClass
This performs nothing.

• void InsertBeforeToplevel(Environment* e, Member& m)
This inserts the member function specified bym just before the toplevel declara-
tion. It should be used to insert the implementation of a member function de-
rived from the argumentm of TranslateMemberFunction() . Note that
AppendMember() only appends a member declaration in the class declaration.

• void AppendAfterToplevel(Environment* e, Member& m)
This appends the member function specified bym just before the toplevel dec-
laration. It should be used to append the implementation of a member function
derived from the argumentmof TranslateMemberFunction() . Note that
AppendMember() only appends a member declaration in the class declaration.

7.4.2 Expressions

Class metaobjects also control the translation of expressions. An expressions, such
as member calls, are translated by one of the followingvirtual functions on the
class metaobject involved with the expression. For example, if the expression is

29

a member call on aPoint object, it is translated by the class metaobject for the
Point class.

• Ptree* TranslateInitializer(Environment* env, Ptree* var_name,
Ptree* expr)

This translates a variable initializerexpr , which would be[= expression] or
[([expression])] . The two forms correspond to C++’s two different nota-
tions for initialization. For example:

complex p(2.3, 4.0);
complex q = 0.0;

The initializers are[([2.3 , 4.0])] and[= 0.0] , respectively.
The argumentvar_name indicates the name of the variable initialized by

expr .
— Default implementation byClass
This translatesexpr by callingTranslateExpression() on the second el-
ement ofexpr .

• Ptree* TranslateAssign(Environment* env, Ptree* object,
Ptree* assign_op, Ptree* expr)

This translates an assignment expression such as= and+=. object is an instance
of the class, which the value ofexpr is assigned to.assign_op is an assign-
ment operator.object andexpr have not been translated yet.
— Default implementation byClass
This callsTranslateExpression() on object andexpr and returns the
translated expression.

• Ptree* TranslateBinary(Environment* env, Ptree* lexpr,
Ptree* binary_op, Ptree* rexpr)

This translates a binary expression.binary_op is the operator such as* , +, <<,
==, | , &&, and, (comma). lexpr andrexpr are the left-side expression and
the right-side expression. They have not been translated yet. The class metaobject
that this function is called on is for the type ofrexpr .
— Default implementation byClass
This callsTranslateExpression() on lexpr andrexpr and returns the
translated expression.

• Ptree* TranslateUnary(Environment* env, Ptree* unary_op,
Ptree* object)

This translates a unary expression.unary_op is the operator, which are either* ,

30

&, +, - , !, ˜ , ++, or -- . sizeof is not included.object is an instance of the
class, which the operator is applied to.object has not been translated yet.
— Default implementation byClass
This callsTranslateExpression() on object and returns the translated
expression.

• Ptree* TranslateSubscript(Environment* env, Ptree* ob-
ject,

Ptree* index)
This translates a subscript expression (array access).object is an instance of the
class, which the operator[] denoted byindex is applied to.index is a list[\[
expression\]] . object andexpr have not been translated yet.
— Default implementation byClass
This callsTranslateExpression() onobject andindex and returns the
translated expression.

• Ptree* TranslatePostfix(Environment* env, Ptree* object,
Ptree* post_op)

This translates a postfix increment or decrement expression (++ or --). object
is an instance of the class, which the operatorpost_op is applied to.object
has not been translated yet.
— Default implementation byClass
This callsTranslateExpression() on object and returns the translated
expression.

• Ptree* TranslateFunctionCall(Environment* env,
Ptree* object, Ptree* args)

This translates a function call expression onobject . Note that it is not for trans-
lating a member function call. It is invoked to translate an application of the call
operator() . object is an instance of the class.object andargs have not
been translated yet. For example:

class Iterator { ... };
:

Iterator next;
while(p = next())

record(p);

TranslateFunctionCall() is called on the class metaobject forIterator
to translatenext() . In this case,object indicatesnext .

31

— Default implementation byClass
This callsTranslateExpression() onobject andTranslateArguments()
on args , and returns the translated expression.

• Ptree* TranslateNew(Environment* env, Ptree* header,
Ptree* new_op, Ptree* placement,

Ptree* type_name, Ptree* arglist)
This translates anew expression.header is a user-defined keyword (type mod-
ifier), :: (if the expression is::new), or nil . new_op is the new operator.
type_name may include an array size surrounded by[] . arglist is argu-
ments to the constructor. It includes parentheses() . placement , type_name ,
andarglist have not been translated yet.
— Default implementation byClass
This callsTranslateArguments() onplacement andarglist , andTranslateNewType()
on type_name . Then it returns the translated expression.

• Ptree* TranslateDelete(Environment* env, Ptree* delete_op,
Ptree* object)

This translates a delete expression on theobject . delete_op is the delete
operator. Note that this function is not called on::delete or delete [] ex-
pressions.
— Default implementation byClass
This callsTranslateExpression() on theobject and returns the trans-
lated expression.

• Ptree* TranslateMemberRead(Environment* env, Ptree* ob-
ject,

Ptree* op, Ptree* member)
This translates a member read expression on theobject . The operatorop is .
(dot) or-> . memberspecifies the member name.object has not been translated
yet.
— Default implementation byClass
This callsTranslateExpression() on theobject and returns the trans-
lated expression.

• Ptree* TranslateMemberRead(Environment* env, Ptree* mem-
ber)
This translates a member read expression on thethis object. That is, it is invoked
if the object is not explicitly specified.
— Default implementation byClass

32

This returnsmember.

• Ptree* TranslateMemberWrite(Environment* env, Ptree* ob-
ject,

Ptree* op, Ptree* member, Ptree* as-
sign_op, Ptree* expr)
This translates a member write expression on theobject . The operatorop is
. (dot) or -> . member specifies the member name.assign_op is an assign
operator such as= and+=. expr specifies the right-hand expression of the assign
operator.object andexpr have not been translated yet.
— Default implementation byClass
This callsTranslateExpression() on object andexpr and returns the
translated expression.

• Ptree* TranslateMemberWrite(Environment* env, Ptree* mem-
ber,

Ptree* assign_op, Ptree* expr)
This translates a member write expression on thethis object. That is, it is in-
voked if the object is not explicitly specified.member specifies the member name.
assign_op is an assign operator such as= and+= . expr specifies the right-
hand expression of the assign operator.expr has not been translated yet.
— Default implementation byClass
This callsTranslateExpression() on expr and returns the translated ex-
pression.

• Ptree* TranslateMemberCall(Environment* env, Ptree* ob-
ject,

Ptree* op, Ptree* member, Ptree* arglist)
This translates a member function call on theobject . The operatorop is . (dot)
or -> . member specifies the member name.arglist is arguments to the func-
tion. It includes parentheses() . object andarglist have not been translated
yet.
— Default implementation byClass
This callsTranslateExpression() onobject , andTranslateArguments()
on arglist . Then it returns the translated expression.

• Ptree* TranslateMemberCall(Environment* env, Ptree* mem-
ber,

Ptree* arglist)
This translates a member function call on thethis object. That is, it is invoked

33

if the object is not explicitly specified.member specifies the member name.
arglist is arguments to the function. It includes parentheses() . arglist
has not been translated yet.
— Default implementation byClass
This callsTranslateArguments() on arglist and returns the translated
expression.

• Ptree* TranslateUnaryOnMember(Environment* env, Ptree* unary_op,
Ptree* object, Ptree* op,

Ptree* member)
This translates a unary operator applied to a member. For example, if an expres-
sion is++p->i , this member function is called on thep’s class. The argument
unary_op is ++, object is p, op is -> , andmember is i .
— Default implementation byClass
This callsTranslateExpression() on object and returns the translated
expression.

• Ptree* TranslateUnaryOnMember(Environment* env, Ptree* unary_op,
Ptree* member)

This translates a unary operator applied to a member. For example, if an expression
is --i andi is a member, this member function is called on the the class forthis
object. The argumentunary_op is -- andmember is i .
— Default implementation byClass
This returns the given expression as is.

• Ptree* TranslatePostfixOnMember(Environment* env, Ptree* ob-
ject,

Ptree* op, Ptree* member,
Ptree* postfix_op)

This translates a postfix operator applied to a member. For example, if an expres-
sion isp->i++ , this member function is called on thep’s class. The argument
object is p, op is -> , member is i , andpostfix_op is ++.
— Default implementation byClass
This callsTranslateExpression() on object and returns the translated
expression.

• Ptree* TranslatePostfixOnMember(Environment* env, Ptree* mem-
ber,

Ptree* postfix_op)
This translates a postfix operator applied to a member. For example, if an expres-

34

sion isi++ andi is a member, this member function is called on the the class for
this object. The argumentmember is i andpostfix_op is ++.
— Default implementation byClass
This returns the given expression as is.

• Ptree* TranslatePointer(Environment* env, Ptree* vari-
able_name)
This translates occurrences of the pointer variables, such asthis , indicating in-
stances of this class. It translates those variables even if they are the left values of
assignment expressions. Note that this function is also called on the target expres-
sion of the-> operator from within (the default)TranslateMemberCall()
etc.
— Default implementation byClass
This returnsvariable_name as is.

• Ptree* TranslateUserStatement(Environment* env, Ptree* ob-
ject,

Ptree* op, Ptree* keyword, Ptree* rest)
This translates a user-defined statement, which is a while-style, for-style, or closure
statement. The first three elements of the statement are specified byobject , op ,
andkeyword . The rest of the statement, the() part and the{} part, is specified
by rest . For example:

matrix.forall(e) { e = 0.0; }

If forall is a user-defined keyword for the while-style statement,object is
matrix , op is . (dot),keyword is forall , andrest is
[(e) [{ [[e = 0.0] ;] }]] .

To recursively translate the{} part,TranslateExpression() should be
called on the last element ofrest , that is, rest->Last()->First() . If
the statement is a closure statement, the declared arguments are recorded in the
given environmentenv . Since the scope represented byenv is only within the
statement, those declared arguments are removed fromenv after this function is
completed.
— Default implementation byClass
This causes an error and returnsnil .

• Ptree* TranslateStaticUserStatement(Environment* env,
Ptree* keyword, Ptree* rest)

This translates a user-defined statement beginning with a class name such as:

35

Lambda::closure(int i) { return i + 1; }

Here,closure is a user-defined keyword. The meaning of the arguments to this
function is the same as that ofTranslateUserStatement() .

To recursively translate the{} part,TranslateExpression() should be
called on the last element ofrest , that is,rest->Last()->First() . If the
statement is a closure statement like the example above, the declared arguments
such asi are recorded in the given environmentenv . Since the scope represented
by env is only within the statement, those declared arguments are removed from
env after this function is completed.

This member function is named after that the syntax is similar to one for
static member function calls.
— Default implementation byClass
This causes an error and returnsnil .

The MOP does not allow programmers to customize array access or pointer oper-
ations. Suppose thatp is a pointer to a classA. Then the class metaobject forA
cannot translate expressions such as*p or p[3] . This design decision is based on
C++’s one. For example, C++’s operator overloading on[] does not change the
meaning of array access. It changes the meaning of the operator[] applied to not
an array of objects but an object.

If the MOP allows programmers to customize array access and pointer opera-
tions, they could implement an inconsistent extension. For example, they want to
translate an expressionp[2] into p->get(2) , wherep is a pointer to a classX.
Then, what should this expression*(p + 2) be translated into? Should the MOP
regard it as an array access or a pointer dereference? Because C++ provides strong
pointer arithmetic, designing an interface to consistently customize array access
and pointer operations is difficult.

The classClass also provides functions for translating expressions and actual
arguments. These functions are not overridden but rather called by other functions
shown above:

• Ptree* TranslateExpression(Environment* env, Ptree* expr)
This translates an expression.

• Ptree* TranslateExpression(Environment* env,
Ptree* expr, TypeInfo& t)

This translates an expression and stores its type int .

• Ptree* TranslateArguments(Environment* env, Ptree* args)

36

This translates an actual-argument list.

• Ptree* TranslateNewType(Environment* env, Ptree* type_name)
This translates the type name included in anew expression. If the created object is
an array, it callsTranslateExpression() on the expression specifying the
array size. This is called byTranslateNew() .

7.5 Registering Keywords

To make user-defined keywords available at the base level, programmers must reg-
ister the keywords by thestatic member functions onClass shown below.
Those member functions should be called byInitialize() .

• static void RegisterNewModifier(char* keyword)
This registerskeyword as a new modifier. If this appears in front of the new op-
erator, the translation is performed byTranslateNew() . If it appears in front
of a function argument, then it is automatically eliminated after the translation. Its
existence can be inspected byGetUserArgumentModifiers() on the mem-
ber metaobject.

• static void RegisterNewMemberModifier(char* keyword)
This registerskeyword as a new member modifier. It is automatically eliminated
after the translation. Its existence can be inspected by
GetUserMemberModifier() on the member metaobject.

• static void RegisterNewAccessSpecifier(char* keyword)
This registerskeyword as a new access specifier. It is automatically eliminated
after the translation. Its existence can be inspected by
GetUserAccessSpecifier() on the member metaobject.

• static void RegisterNewWhileStatement(char* keyword)
This registerskeyword as a newwhile -style statement.

• static void RegisterNewForStatement(char* keyword)
This registerskeyword as a newfor -style statement.

• static void RegisterNewClosureStatement(char* keyword)
This registerskeyword as a new closure-style statement.

37

• static void RegisterMetaclass(char* keyword, char* meta-
class)
This registerskeyword as a new modifier and associates it withmetaclass . If
this keyword appears in front of a class declaration, thenmetaclass is selected
for the declared class.
The translation of the registered keyword for the while-, the for-, or the closure-
style statement is the responsibility of the class metaobject. It is processed by
TranslateUserStatement() andTranslateStaticUserStatement() .

7.6 Initialization and Finalization

The MOP provides functions to initialize and finalize class metaobjects:

• static bool Initialize()
This is a class initializer; it is invoked only once on each metaclass (not on each
class metaobject) right after the compiler starts (if it is statically linked) or the
metaclass is dynamically loaded. It returnstrue if the initialization succeeds.
The subclasses ofClass may define their ownInitialize() but they must
not call their base classes’Initialize() .
— Default implementation byClass
This does nothing except returningtrue .

• Ptree* FinalizeInstance()
This is invoked on each class metaobject after all the translation is finished. The
returnedPtree object is inserted at the end of the translated source file. This
member function is notoverridable; FinalizeInstance() of the subclasses
of Class must call the base-class’esFinalizeInstance() .
— Default implementation byClass
This does nothing except returningnil .

• static Ptree* FinalizeClass()
This is invoked on each metaclass after all the translation is finished if it exists.
The returnedPtree object is inserted at the end of the translated source file. The
subclasses ofClass may define their ownFinalizeClass() but they must
not call their base classes’FinalizeClass() .
— Default implementation byClass
This returnsnil .

• static ClassArray& AllClasses()
This is available only withinFinalizeInstance() . It returns an array of all

38

the classes appearing in the base-level program. The returned arraya is used as
follows:

int n = a.Number(); // get the number of elements
Class* c = a[0]; // get the first element
Class* c2 = a.Ref(0); // same as a[0]

• int Subclasses(ClassArray& result)
This is available only withinFinalizeInstance() . It returns the number of
all the subclasses of the class. Those subclasses are also stored inresult .

• int ImmediateSubclasses(ClassArray& result)
This is available only withinFinalizeInstance() . It returns the number
of all the immediate subclasses of the class. Those subclasses are also stored in
result . The immediate subclass means only a child class but not a grand child.

• static int InstancesOf(char* metaclas_name,
ClassArray& result)

This is available only withinFinalizeInstance() . It returns the number of
all the classes that are instances of the metaclass specified bymetaclass_name .
Also those classes are stored inresult .

7.7 Inserting Statements

Class metaobjects can not only replace expressions but also insert statements into
the translated source code:

• void InsertBeforeStatement(Environment* e, Ptree* s)
This inserts the statements just before the statement currently translated.

• void AppendAfterStatement(Environment* e, Ptree* s)
This appends the statements just after the statement currently translated.

• void InsertBeforeToplevel(Environment* e, Ptree* s)
This inserts the statements just before the toplevel declaration, such as function
definitions, that are currently translated.

• void AppendAfterToplevel(Environment* e, Ptree* s)

39

This appends the statements just after the toplevel declaration, such as function
definitions, that are currently translated.

• bool InsertDeclaration(Environment* e, Ptree* d)
This inserts the declaration statementd at the beginning of the function body. For
example,

1: void Point::Move(int new_x, int new_y)
2: {
3: x = new_x; y = new_y;
4: }

The declaration statementd is inserted between the 2nd line and the 3rd line.
This function returnstrue if the insertion succeeds.

• bool InsertDeclaration(Environment* e, Ptree* d,
Ptree* key, void* client_data)

This inserts the declaration statementd at the beginning of the function body, and
also recordsclient_data with key . The recorded client data last while the
function body is translated. This function returnstrue if no client data is recorded
with key and the insertion succeeds.

• void* LookupClientData(Environment* e, Ptree* key)
This returns the client data associated withkey . If the client data is not recorded,
this function returnsnil .

7.8 Command Line Options

Class metaobjects can receive command line options. For example, if the user
specify the-M option:

% occ -Mclient -Mmode=tcp sample.cc

Then the class metaobjects can receive the command line optionsclient and
mode (the value istcp) by the following functions:

• static bool LookupCmdLineOption(char* option_name)
This returnstrue if the option specified byoption_name is given from the
command line.

40

ClassMetaclass Point p0

subclass−of

instance−
of

Figure 2: Instance-of Relationship

• static bool LookupCmdLineOption(char* key, char*& value)
This returnstrue if the option specified byoption_name is given from the
command line. The value of the option is stored invalue . If the option value is
not given,value is nil .

7.9 Error Message

The following functions reports an error that occurs during the source-to-source
translation.

• void ErrorMessage(Environment* env, char* message,
Ptree* code, Ptree* where)

This prints an error message. For example,message is "wrong type:" and
code is a Ptree metaobject representingPoint , then the printed messages is
something like this:

sample.cc:25: wrong type: Point

The file name and the line number point to the location of the code specified by
where . If where is nil , no file name or line number are not printed.

The first argumentenv can be omitted. In this case, the printed line number
may be wrong.

• void WarningMessage(Environment* env, char* message,
Ptree* name, Ptree* where)

This prints a warning message. The meaning of the arguments are the same as
ErrorMessage() . The first argumentenv can be omitted.

41

7.10 Metaclass for Class

Since OpenC++ is a self-reflective language, the meta-level programs are also in
OpenC++. They must be compiled by the OpenC++ compiler. Because of this self-
reflection, metaclasses also have their metaclasses. The metaclass forClass and
its subclasses must beMetaclass . However, programmers do not have to explic-
itly declare the metaclass for their metaclasses because the subclasses ofClass
inherit the metaclass fromClass .

Metaclass makes it easy to define a subclass ofClass . It automatically
inserts the definition ofMetaclassName() of that subclass and also generates
house-keeping code internally used by the compiler.

SinceMetaclass is a subclass ofClass , its metaclass isMetaclass it-
self. This relationship is illustrated in Figure 2.

42

8 Member Metaobjects

Member metaobjects provide the ability of introspection and source-code transla-
tion of the members. They can be obtained by callingNthMember() orLookupMember()
on a class metaobject. The following is the list of the member functions provided
by the member metaobjects.

8.1 Introspection

First, we show the member functions for introspection.

• Member(Member&)
This is a constructor to make a copy of a member metaobject.

• Ptree* Name()
This returns the member name.

• Ptree* ArgumentList()
This returns the formal argument list of the member. For example, if the member
is int f(int, char*) , then this function returns
[[[int] [nil]] , [[char] [*]]] . If the member is a data member, this
function returnsnil .

• Ptree* Arguments()
This returns the argument list of the member. UnlikeArgumentList() , the
returned list does not include the types. It is a list of the argument names. If the
member isint f(int p, char* q) , then this function returns[p , q] .
Even if the argument name is not given in the argument list, it is automatically
filled by this function. In this case, the formal argument list of the member is also
changed to include that argument name. If the member is a data member, this func-
tion returnsnil .

• Ptree* MemberInitializers()
This returns the member initializers if the member is a constructor. Otherwise, it
returnsnil . For example, if the member is:

X::X() : p(3), q(1) {
... }

Then this function returns[: [p ([3])] , [q ([1])]] .

43

• Ptree* FunctionBody()
This returns the function body if the member is a function. The returned text in-
cludes braces{} .

• int Nth()
If the member is thei -th member, this returnsi . Otherwise, if the member is not
declared, it returns -1.

• void Signature(TypeInfo& t)
This returns the type of the member int . If the member is a member function, the
returned type is the function type.

• Class* Supplier()
This returns the class supplying this member. If the member is inherited from the
base class, then the returned class is that base class.

• bool IsConstructor()
This returnstrue if the member is a constructor.

• bool IsDestructor()
This returnstrue if the member is a destructor.

• bool IsFunction()
This returnstrue if the member is a member function.

• bool IsPublic()
This returnstrue if the member is apublic member.

• bool IsProtected()
This returnstrue if the member is aprotected member.

• bool IsPrivate()
This returnstrue if the member is aprivate member.

• bool IsStatic()
This returnstrue if the member is astatic member.

• bool IsMutable()
This returnstrue if the member is amutable member.

44

• bool IsInline()
This returnstrue if the member is ainline member function.

• bool IsVirtual()
This returnstrue if the member is avirtual member function.

• bool IsPureVirtual()
This returnstrue if the member is a purevirtual member function.

OpenC++ allows syntax extensions for access specifiers and argument lists. The
following members are used for dealing with such syntax extensions.

• Ptree* GetUserAccessSpecifier()
This returns an user-defined access specifier for the member. For example, suppose
thatsync is a user-defined keyword:

class Window {
public:

void Move();
sync:

void Resize();
};

ThenGetUserAccessSpecifier() called onResize() returns[sync :] .
The user-defined access specifier is effective until another access specifier appears.
For example:

class X {
public:

void f1(); // public
sync:

void f2(); // public, sync
private:

void g1(); // private
sync:

void g2(); // private, sync
};

The user-defined access specifiers are automatically eliminated. The programmer
does not have to be concerned about it.

• Ptree* GetUserMemberModifier()

45

This returns the member modifier for the member. If no member modifier is spec-
ified, this returnsnil . The member modifier is automatically eliminated. The
programmer does not have to be concerned about it.

• bool GetUserArgumentModifiers(PtreeArray& modifiers)
This computes user-defined type modifiers attached to the argument types. If suc-
cessful, it returnstrue and stores the result inmodifiers . The result is a
PtreeArray of user-defined type modifiers. Thei -the element is one for the
i -th argument. If no modifier is specified, the element isnil . For example, if
ref is a user-defined type modifier,

class C {
public:

void f(ref int p1, int p2);
};

ThenGetUserArgumentModifiers() called onf returns an array{ [ref], nil } .
All the user-defined type modifiers are automatically eliminated. The program-

mer does not have to be concerned about it.

8.2 Translation

The member metaobjects also provide functions for customizing the member. The
changes are not actually reflected on the source-code translation untilChangeMember()
or AppendMember() is called on the class metaobject.

• void SetName(Ptree* name)
This changes the member name toname.

• void SetQualifiedName(Ptree* name)
This changes the member name toname. Unlike SetName() , this function sub-
stitutesname for the member name including the qualified class name. It is useful
in Class::TranslateMemberFunction() . For example, if the member is:

void Rect::Enlarge(int rx, int ry) { ... }

Then,SetQualifiedName(Ptree::Make("Point::Move")) changes this
member to:

void Point::Move(int rx, int ry) { ... }

46

• void SetArgumentList(Ptree* arglist)
This changes the formal argument list of the member function toarglist .

• void SetMemberInitializers(Ptree* init)
This changes the member initializers of the constructor toinit .

• void SetFunctionBody(Ptree* body)
This changes the function body of the member tobody .

The member functions for introspection such asName() does not reflect the cus-
tomization in the results. For example,Name() returns the original member name
even ifSetName() specifies a new name. To get the new value specified by the
above functions such asSetName() , the following functions are used:

• void NewName()
This returns the new member name substituted for the original one.

• void NewArgumentList()
This returns the new argument list substituted for the original one.

• void NewMemberInitializers()
This returns the new member initializers substituted for the original one.

• void NewFunctionBody()
This returns the new function body substituted for the original one.

47

Command Reference

NAME
occ — the Open C++ compiler

SYNOPSIS
occ [-l] [-s] [-V] [-v] [-c] [-E] [-n] [-p] [-P]

[-m file name] [--regular-c++] [-I includedirectory]
[-D name[= def]] [-d option]
[-M option[= value]] [-S metaclass]
[-- C++ compiler options [.o and.a files]] sourcefile

DESCRIPTION
occ compiles an OpenC++ program into an object file. It first invokes the
C++ preprocessor with the predefined macroopencxx and generates a
.occ file, then translates it into a.ii file according to the meta-level pro-
gram. The.ii file is compiled by the back-end C++ compiler, and finally
ana.out file is produced. Ifocc is run with the-c option, it generates a
.o file but suppresses linking.

For example, to compile a base-level programsample.cc with the meta-
level programMyClass.mc , the user should do as follows:

% occ -m MyClass.mc

First,MyClass.mc should be compiled into shared librariesMyClass.so
andMyClass-init.so . The produced shared libraries must be under the
directory specified byLD LIBRARY PATH. Then, the user can compile the
base-level program:

% occ -- -o sample sample.cc

If sample.cc requires a metaclassMyClass , occ dynamically loads and
links MyClass.so andMyClass-init.so . Thensample.cc is com-
piled according to the metaclassMyClass and an executable filesample
is produced.

The separate compilation of meta-level programs is also supported. Suppose
thatMyClass is implemented byfoo.mc andbar.mc . The user should
compile them as follows:

% occ -c -m foo.mc

% occ -c -m bar.mc

This producesfoo.o , bar.o , andMyClass-init.so . Although the
second invocation ofocc overridesMyClass-init.so produced by the

48

first invocation, this is not a problem. To get the shared library,foo.o and
bar.o have to be linked by hand intoMyClass.so by:

% occ -mMyClass foo.o bar.o

For the reason of efficiency, the user can statically link the meta-level pro-
gram with the OpenC++ compiler. To do this, the user must not specify the
-m option:

% occ -- -o myocc opencxx.a MyClass.mc

First, MyClass.mc should be compiled and linked to the OpenC++ com-
piler. The command shown above produces the OpenC++ compiler that
MyClass.mc is embedded in.opencxx.a is the archive of the origi-
nal OpenC++ compiler. (Note: The Solaris and Linux users have to add the
-ldl option afteropencxx.a .)

Then, the produced compilermyocc is used to compile the base-level
program:

% myocc -- -o sample sample.cc

This compilessample.cc and produces an executable filesample .

OPTIONS

-D Define a macronameasdef.

-E Don’t run the back-end C++ compiler. Stop after generating a.ii
file.

-I Add adirectoryto the search path of the#include directive.

-M Specify anoptionwith value. It is passed to metaobjects.

-P Run the preprocessor again after translation (Unix only).

-S Load metaclassat the beginning. It enables to load a metaclass and
invoke Initialize() without themetaclass declaration. It is
usedful to callChangeDefaultMetaclass() on Class .

-V Show the version number.

-c Suppress linking and produce a.o file.

-d Passoption to the preprocessor. For example,-d/MDd directs the
compiler to pass/MDd to the preprocessor.

-l Print the list of statically loaded metaclasses.

-m Produce a shared library (a.so file.) This is used to compile a
metaclass. Iffile nameis specified, the name of the shared library is
file name.so . If the -c option is specified together,occ produces a
.so file, which should be linked by the user to be a shared library.

49

-n Suppress invoking the preprocessor.

-p Stop after the parsing stage. No translation is done.

-s Print the whole parse tree of the given source program. Don’t perform
translation or compilation. If no source file is given,occ reads from
the standard input.

-v Specify the verbose mode.

--regular-c++ Inhibit the extended syntax. This enables the key-
wordmetaclass to be used as a variable name. This option is useful
when parsing legacy code being not intended to translation. When this
option is used, the symbolopencxx is not defined.

-- The following options are interpreted as options for the back-end C++
compiler. For example, if you type

occ -I.. -- -g foo.c

Then the-g option is passed to the C++ compiler. Note that these
options are not passed to the C++ preprocessor. The-D and-I options
need to be placed before-- .

FILES

file. {cc,C,c,cpp,cxx,mc } source file.

file.occ output file after C++ preprocessing.

file.ii output file after translation.

file.o object file.

file.so shared library dynamically loaded byocc .

opencxx.a library to link with meta-level program.

NOTES

• While the C++ processor is running, the macroopencxx is prede-
fined.

• The programs compiled byocc do not need any runtime libraries or
a garbage collector unless the meta-level program requires them at the
base level.

COPYRIGHT

Copyright c©1997-99 Shigeru Chiba. All Rights Reserved.
Copyright c©1995, 1996 Xerox Corporation. All Rights Reserved.

50

AUTHOR

Shigeru Chiba, University of Tsukuba, Japan.
Email: chiba@is.tsukuba.ac.jp

51

