
Open C++ Tutorial∗

Shigeru Chiba
Institute of Information Science and Electronics

University of Tsukuba
chiba@is.tsukuba.ac.jp

Copyright c©1998 by Shigeru Chiba. All Rights Reserved.

1 Introduction

OpenC++ is an extensible language based on C++. The extended features of
OpenC++ are specified by a meta-level program given at compile time. For dis-
tinction, regular programs written in OpenC++ are called base-level programs. If
no meta-level program is given, OpenC++ is identical to regular C++.

The meta-level program extends OpenC++ through the interface called the
OpenC++ MOP. The OpenC++ compiler consists of three stages: preprocessor,
source-to-source translator from OpenC++ to C++, and the back-end C++ com-
piler. The OpenC++ MOP is an interface to control the translator at the second
stage. It allows to specify how an extended feature of OpenC++ is translated into
regular C++ code.

An extended feature of OpenC++ is supplied as anadd-onsoftware for the
compiler. The add-on software consists of not only the meta-level program but also
runtime support code. The runtime support code provides classes and functions
used by the base-level program translated into C++. The base-level program in
OpenC++ is first translated into C++ according to the meta-level program. Then
it is linked with the runtime support code to be executable code. This flow is
illustrated by Figure 1.

The meta-level program is also written in OpenC++ since OpenC++ is a self-
reflective language. It defines new metaobjects to control source-to-source transla-
tion. The metaobjects are the meta-level representation of the base-level program
and they perform the translation. Details of the metaobjects are specified by the

∗This document was originally written as part of: Shigeru Chiba, “OpenC++ Programmer’s Guide
for Version 2,” Xerox PARC Technical Report, SPL-96-024, 1996.

1

runtime support

OpenC++
compiler

executable
codeLinker

base−level
 program

meta−level program

Figure 1: The OpenC++ Compiler

OpenC++ MOP. In the following sections, we go through several examples so that
we illustrate how the OpenC++ MOP is used to implement language extensions.

2 Verbose Objects

A MOP version of “hello world” is verbose objects, which print a message for
every member function call. We choose them as our first example.

The MOP programming in OpenC++ is done through three steps: (1) decide
what the base-level program should look like, (2) figure out what it should be
translated into and what runtime support code is needed, and (3) write a meta-level
program to perform the translation and also write the runtime support code. We
implement the verbose objects through these steps.

2.1 What the base-level program should look like

In the verbose objects example, we want to keep the base-level program looking
the same as much as possible. The only change should be to put an annotation that
specifies which class of objects print a message for every member function call.
Suppose that we want to make a classPerson verbose. The base-level program
should be something like:

// person.cc
#include <stdio.h>

metaclass VerboseClass Person; // metaclass declaration
class Person {
public:

Person(int age);
int Age() { return age; }
int BirthdayComes() { return ++age; }

2

private:
int age;

};

main()
{

Person billy(24);
printf("age %d\n", billy.Age());
printf("age %d\n", billy.BirthdayComes());

}

Note that themetaclass declaration in the first line is the only difference from
regular C++ code. It specifies thatPerson objects print a message for every
member function call.

2.2 What the base-level program should be translated

In order to make the program above work as we expect, member function calls on
Person objects must be appropriately translated to print a message. For example,
the two expressions:

billy.Age()
billy.BirthdayComes()

must be translated respectively into:

(puts("Age()"), billy.Age())
(puts("BirthdayComes()"), billy.BirthdayComes())

Note that the resulting value of the comma expression(x , y) is y . So the
resulting values of the substituted expressions are the same as those of the original
ones.

2.3 Write a meta-level program

Now, we write a meta-level program. What we should do is to translate only mem-
ber function calls onPerson objects in the way shown above. We can easily do
that if we use the MOP.

In OpenC++, classes are objects as in Smalltalk. We call them class metaob-
jects when we refer to their meta-level representation. A unique feature of OpenC++
is that a class metaobject translates expressions involving the class at compile time.
For example, the class metaobject forPerson translates a member function call
billy.Age() sincebilly is aPerson object.

3

By default, class metaobjects are identity functions; they do not change the
program. So, to implement our translation, we define a new metaclass — a new
class for class metaobjects — and use it to make the class metaobject forPerson .

The metaclass for a class is specified by themetaclass declaration at the
base level. For example, recall that the base-level programperson.cc contains
this:

metaclass VerboseClass Person; // metaclass declaration

This declaration specifies that the class metaobject forPerson is an instance of
VerboseClass .

A new metaclass must be a subclass of the default metaclassClass . Here is
the definition of our new metaclassVerboseClass :

// VerboseClass.mc
#include "mop.h"

class VerboseClass : public Class {
public:

Ptree* TranslateMemberCall(Environment*, Ptree*, Ptree*,
Ptree*, Ptree*);

};

Ptree* VerboseClass::TranslateMemberCall(Environment* env,
Ptree* object, Ptree* op, Ptree* member, Ptree* arglist)

{
return Ptree::Make("(puts(\"%p()\"), %p)",

member,
Class::TranslateMemberCall(env, ob-

ject, op,
member, arglist));

}

The metaclassVerboseClass is just a regular C++ class. It inherits from
Class and overrides one member function.TranslateMemberCall() takes
an expression such asbilly.Age() and returns the translated one. Both the
given expression and the translated one are represented in the form of parse tree.
Ptree is the data type for that representation.

Since the class metaobject forPerson is responsible only for the translation
involving the classPerson , TranslateMemberCall() does not have to care
about other classes. It just constructs a comma expression:

(puts(" member-name"), member-call)

4

from the original expression.Ptree::Make() is a convenience function to con-
struct a new parse tree.%pis replaced with the following argument.

We do not need many concepts to write a meta-level program. As we saw
above, the key concepts are only three. Here, we summarize these concepts:

class metaobject: The representation of a class at the meta level.

metaclass: A class whose instances are class metaobjects.

metaclassClass : The default metaclass. It is named because its instances are
class metaobjects.

2.4 Compile, debug, and run

We first compile the meta-level program and extend the OpenC++ compiler, which
is used to compile the base-level program. Because OpenC++ is a reflective lan-
guage, the meta-level program is compiled by the OpenC++ compiler itself.

% occ -m -- -g VerboseClass.mc

The option-m means that a metaclass is compiled. The other option-g following
-- is passed to the back-end C++ compiler.VerboseClass.mc is compiled
and a shared library (dynamically loadable library) is produced.

Next, we compile the base-level programperson.cc with the compiled meta-
class:

% occ -- -g -o person person.cc

The OpenC++ compiler dynamically loadsVerboseClass if it encounters the
metaclass declaration.

Now, we got an executable fileperson . It prints member function names if
they are executed:

% person
Age()
age 24
BirthdayComes()
age 25
%

The OpenC++ MOP also provides some functions for debugging. First, pro-
grammers may useDisplay() onPtree metaobjects to debug a compiler. This
function prints the parse tree represented by thePtree metaobject. For example,
if the debugger isgdb , programmers may print the parse tree pointed to by a vari-
ableobject in this way:

5

% gdb occ
:

(gdb) print object->Display()
billy
$1 = void
(gdb)

Note thatgdb cannot handle dynamically loaded code. To debug a compiled meta-
class, it should be statically linked to the compiler. See the command reference
section of the manual.

Furtheremroe, the OpenC++ compiler accepts the-s option to print the whole
parse tree of the given program. The parse tree is printed in the form of nested list:

% myocc -s person.cc
[typedef [char] [* __gnuc_va_list] ;]

:
[metaclass VerboseClass Person nil ;]
[[[class Person nil [{ [

[public :]
[nil [Person ([[[int] [i]]])] [{ [

[[age = i] ;]
] }]]
[[int] [Age (nil)] [{ [

[return age ;]
] }]]
[[int] [BirthdayComes (nil)] [{ [

[return [++ age] ;]
] }]]
[private :]
[[int] [age] ;]

] }]]] ;]
[nil nil [main (nil)] [{ [

[[Person] [billy ([24])] ;]
[[printf [(["age %d\n" , [billy . Age [(nil)]]])]] ;]
[[printf [(["age %d\n" , [billy . BirthdayComes ...

] }]]
%

This option makes the compiler just invoke the preprocessor and prints the parse
tree of the preprocessed program.[] denotes a nested list. The compiler does not
perform translation or compilation.

3 Syntax Extension for Verbose Objects

In the verbose object extension above, the base-level programmers have to write the
metaclass declaration. The extension will be much easier to use if it provides

6

easy syntax to declare verbose objects. Suppose that the base-level programmers
may write something like this:

// person.cc
verbose class Person {
public:

Person(int age);
int Age() { return age; }
int BirthdayComes() { return ++age; }

private:
int age;

};

Note that the class declaration begins with a new keywordverbose but there is
no metaclass declaration in the code above.

This sort of syntax extension is easy to implement with the OpenC++ MOP.
To make the new keywordverbose available, the meta-level program must call
Class::RegisterMetaclass() during the initialization phase of the com-
piler. So we add astatic member functionInitialize() to the classVer-
boseClass . It is automatically invoked at beginning by the MOP.

// VerboseClass2.mc
#include "mop.h"
class VerboseClass : public Class {
public:

Ptree* TranslateMemberCall(Environment*, Ptree*, Ptree*,
Ptree*, Ptree*);

static bool Initialize();
};

bool VerboseClass::Initialize()
{

RegisterMetaclass("verbose", "VerboseClass2");
return TRUE;

}

RegisterMetaclass() defines a new keywordverbose . If a class declara-
tion begins with that keyword, then the compiler recognizes that the metaclass is
VerboseClass2 . This is all that we need for the syntax extension. Now the new
compiler accepts theverbose keyword.

4 Matrix Library

The next example is a matrix library. It shows how the OpenC++ MOP works to
specialize an optimization scheme for a particular class. TheMatrix class is a

7

popular example in C++ to show the usage of operator overloading. On the other
hand, it is also famous that the typical implementation of theMatrix class is not
efficient in practice. Let’s think about how this statement is executed:

a = b + c - d;

The variablesa, b, c , andd areMatrix objects. The statement is executed by
invoking the operator functions+, - , and=. But the best execution is to inline the
operator functions in advance to replace the statement:

for(int i = 0; i < N; ++i)
a.element[i] = b.element[i] + c.element[i] - d.element[i];

C++’s inline specifier does not do this kind of smart inlining. It simply extracts
a function definition but it does not fuse multiple extracted functions into efficient
code as shown above. Expecting that the C++ compiler automatically performs the
fusion is not realistic.

We use the OpenC++ MOP to implement this smart inlining specialized for the
Matrix class. Again, we follow the three steps of the OpenC++ programming.

4.1 What the base-level program should look like

The objective of the matrix library is to provide the matrix data type as it is a
built-in type. So the base-level programmers should be able to write:

Matrix a, b, c;
double k;

:
a = a * a + b - k * c;

Note that the last line includes both a vector producta * a and a scalar product
k * c .

4.2 What the base-level program should be translated

We’ve already discussed this step. The expressions involvingMatrix objects are
inlined as we showed above. We do not inline the expressions if they include more
than one vector products. The gain by the inlining is relatively zero against two
vector products.

Unlike the verbose objects example, we need runtime support code in this ex-
ample. It is the class definition ofMatrix . Note that the base-level programmers
do not defineMatrix by themselves.Matrix must be supplied as part of the
compiler add-on for matrix arithmetics.

8

4.3 Write a meta-level program

To implement the inlining, we define a new metaclassMatrixClass . It is a
metaclass only forMatrix . MatrixClass overrides a member functionTrans-
lateAssign() :

// MatrixClass.mc

Ptree* MatrixClass::TranslateAssign(Environment* env,
Ptree* object, Ptree* op, Ptree* expr)

{
if(we can inline on the expression)

return generate optimized code
else

return Class::TranslateAssign(env, object, op, expr);
}

This member function translates an assignment expression.object specifies the
L-value expression,op specifies the assignment operator such as= and+=, and
expr specifies the assigned expression. If the inlining is not applicable, this func-
tion invokesTranslateAssign() of the base class. Otherwise, it parses the
givenexpr and generate optimized code.

Sinceexpr is already a parse tree, what this function has to do is to traverse
the tree and sort terms in the expression. It is defined as a recursive function that
performs pattern matching for each sub-expression. Note that each operator makes
a sub-expression. So an expression such asa + b - c is represented by a parser
tree:

[[a + b] - c]

The OpenC++ MOP provides a convenience functionPtree::Match() for pat-
tern matching. So the tree traverse is described as follows:

static bool ParseTerms(Environment* env, Ptree* expr, int k)
{

Ptree* lexpr;
Ptree* rexpr;

if(expr->IsLeaf()){ // if expr is a variable
termTable[numOfTerms].expr = expr;
termTable[numOfTerms].k = k;
++numOfTerms;
return TRUE;

}
else if(Ptree::Match(expr, "[%? + %?]", &lexpr, &rexpr))

return ParseTerms(env, lexpr, k)

9

&& ParseTerms(env, rexpr, k);
else if(Ptree::Match(expr, "[%? - %?]", &lexpr, &rexpr))

return ParseTerms(env, lexpr, k)
&& ParseTerms(env, rexpr, -k);

else if(Ptree::Match(expr, "[(%?)]", &lexpr))
return ParseTerms(env, lexpr, k);

else if(Ptree::Match(expr, "[- %?]", &rexpr))
return ParseTerms(env, rexpr, -k);

else
return FALSE;

}

This function recursively traverses the given parse treeexpr and stores the vari-
ables inexpr into an arraytermTable . It also stores the flag (+ or -) of the
variable into the array. The returned value isTRUEif the sorting is successfully
done.

After ParseTerms() is successfully executed, each term in the expression
is stored in the arraytermTable . The rest of the work is to construct an inlined
code from that array:

static Ptree* DoOptimize0(Ptree* object)
{

Ptree* index = Ptree::GenSym();
return Ptree::Make(

"for(int %p = 0; %p < %s * %s; ++%p)\n"
" %p.element[%p] = %p;",
index, index, SIZE, SIZE, index,
object, index, MakeInlineExpr(index));

}

Ptree::GenSym() returns a symbol name that has not been used. It is used as
a loop variable.MakeInlineExpr() looks at the array and produces an inlined
expression:

static Ptree* MakeInlineExpr(Ptree* index_var)
{

int i;
Ptree* expr;
Ptree* inline_expr = nil;

for(i = numOfTerms - 1; i >= 0; --i){
char op;
if(termTable[i].k > 0)

op = ’+’;
else

op = ’-’;

10

expr = Ptree::Make("%c %p.element[%p]",
op, termTable[i].expr, index_var);

inline_expr = Ptree::Cons(expr, inline_expr);
}

return inline_expr;
}

The complete program of this example isMatrixClass.mc , which is dis-
tributed together with the OpenC++ compiler. See that program for more details.
It deals with the scalar and vector products as well as simple+ and- operators.

4.4 Write runtime support code

Writing the runtime support code is straightforward. The classMatrix is defined
in regular C++ except themetaclass declaration:

// matrix.h
const N = 3;

metaclass MatrixClass Matrix;
class Matrix {
public:

Matrix(double);
Matrix& operator = (Matrix&);

:
double element[N * N];

};

Matrix& operator + (Matrix&, Matrix&);
Matrix& operator - (Matrix&, Matrix&);
Matrix& operator * (Matrix&, Matrix&);
Matrix& operator * (double, Matrix&);

Note that the classMatrix is a complete C++ class. It still works if themeta-
class declaration is erased. For more details, see the sample programma-
trix.cc . They must be compiled by the OpenC++ compiler.

5 Syntax Extension for the Matrix Library

Initializer

We can also implement syntax sugar for the matrix library. First of all, we enable
the following style of initialization:

Matrix r = { 0.5, -0.86, 0, 0.86, 0.5, 0, 0, 0, 1 };

11

This notation is analogous to initialization of arrays. In regular C++, however, an
object cannot take an aggregate as its initial value. So we translate the statement
shown above byMatrixClass into this correct C++ code:

double tmp[] = { 0.5, -0.86, 0, 0.86, 0.5, 0, 0, 0, 1 };
Matrix r = tmp;

To do this translation,MatrixClass must override a member functionTrans-
lateInitializer() :

// MatrixClass.mc

Ptree* MatrixClass::TranslateInitializer(Environment* env, Ptree* name,
Ptree* init)

{
Ptree* sep = Ptree::First(init);
Ptree* expr = Ptree::Second(init);
if(sep->Eq(’=’) && Ptree::Match(val, "[{ %* }]")) {

Ptree* tmp = Ptree::GenSym();
InsertBeforeStatement(Ptree::Make("double %p[] = %p;\n",

tmp, expr));
return Ptree::Make("= %p", tmp);

}
else

return Class::TranslateInitializer(env, init, before,
after);

}

This member function translates the initializer of aMatrix object. For example,
it receives, as the argumentinit , the initializer= { 0.5, ... } of r . If
the initializer is an aggregate, this member function translates it as we mentioned
above. The temporary arraytmp is inserted before the variable declaration by
InsertBeforeStatement() .

The forall statement

The second syntax sugar we show is a new kind of loop statement. For example,
the programmer may write:

Matrix m;
:

m.forall(e){ e = 0.0; }

e is bound to each element during the loop. The programmer may write any state-
ments between{ and} . The loop statement above assigns0.0 to all the elements
of the matrixm. This new loop statement should be translated into this:

12

for(int i = 0; i < N; ++i){
double& e = m.element[i];
e = 0.0;

}

The OpenC++ MOP allows programmers to implement a new kind of statement
such asforall . To implement this statement, first we have to register a new
keywordforall :

// MatrixClass.mc

bool MatrixClass::Initialize()
{

RegisterNewWhileStatement("forall");
return TRUE;

}

Initialize() is a member function automatically invoked at the beginning of
compilation.

We also have to define what theforall statement is translated into.Ma-
trixClass overrides a member functionTranslateUserStatement() :

Ptree* MatrixClass::TranslateUserStatement(Environment* env,
Ptree* object, Ptree* op, Ptree* keyword, Ptree* rest)

{
Ptree *tmp, *body, *index;

Ptree::Match(rest, "[([%?]) %?]", &tmp, &body);
index = Ptree::GenSym();
return Ptree::Make(

"for(int %p = 0; %p < %s * %s; ++%p){\n"
" double& %p = %p%p element[%p];\n"
" %p }\n",
index, index, SIZE, SIZE, index,
tmp, object, op, index, TranslateStatement(env, body));

}

Theforall statement is parsed so thatobject , op , andkeyword are bound to
m . forall , respectively.rest is bound to the rest of code(e){ e = 0.0; } .
TranslateUserStatement() uses those arguments to construct the substi-
tuted code. TranslateStatement() is called to recursively translate the
body part of theforall statement.

13

6 Before-Method

CLOS provides a useful mechanism called before- and after- methods. They are
special methods that are automatically executed before or after the primary method
is executed.

6.1 What the base-level program should look like

We implement before-methods in OpenC++. For simplicity, if the name of a mem-
ber function isbefore f() , then our implementation regards this member func-
tion as the before-method for the member functionf() . We don’t introduce any
syntax extension. For example,

metaclass Queue : BeforeClass;
class Queue {
public:

Queue(){ i = 0; }
void Put(int);
void before_Put();
int Peek();

private:
int buffer[SIZE];
int i;

};

Put() has a before-methodbefore Put() whereasPeek() does not since
before Peek() is not defined in the classQueue.

The before-method is automatically executed when the primary method is called.
If the programmer say:

Queue q;
:

q.Put(3);
int k = q.Peek();

The execution ofq.Put(3) is preceded by that of the before-methodq.before Put() .
SincePeek() does not have a before-method, the execution ofq.Peek() is not
preceded by any other function.

6.2 What the base-level program should be translated

In this extension, the class declaration does not require any change. Only member
function calls need to be translated. For example,

14

q.Put(3)

should be translated into:

((tmp = &q)->before_Put(), tmp->Put(3))

This expression first stores the address ofq in a temporary variabletmp and then
callsbefore Put() andPut() . The address ofq should be stored in the tem-
porary variable to avoid evaluatingq more than once. Also, the temporary variable
must be declared in advance.

6.3 Write a meta-level program

The metaclassBeforeClass overridesTranslateMemberCall() to imple-
ment the translation mentioned above. The complete program ofBeforeClass
is BeforeClass.mc in the distribution package. Here, we explain some impor-
tant topics in the program.

First of all, we have to decide whether there is a before-method for a given
member function.BeforeFunction() does this work:

Ptree* BeforeClass::BeforeFunction(Ptree* name)
{

Ptree* before = Ptree::Make("before_%p", name);
if(LookupMember(before))

return before;
else

return nil;
}

In the first line, this produces the name of the before-method byPtree::Make() .
Then it callsLookupMember() supplied byClass . LookupMember() re-
turnstrue if the class has a member that matches the given name.

The next issue is a temporary variable. We have to appropriately insert a vari-
able declaration to use a temporary variable. The name of the temporary variable is
obtained by callingPtree::GenSym() . The difficulty is how to share the tem-
porary variable among member function calls. To do this, we record the temporary
variable in the environment when we first declare the temporary variable.

Ptree* class_name = Name();
Ptree *tmpvar = (Ptree*)LookupClientData(env, class_name);
if(tmpvar == nil) {

tmpvar = Ptree::GenSym();
Ptree* decl = Ptree::Make("%p * %p;", class_name, tmpvar);
InsertDeclaration(env, decl, class_name, tmpvar);

15

}

return Ptree::Make("((%p=%c%p)->%p(), %p->%p%p)",
varname, (op->Eq(’.’) ? ’&’ : ’ ’), object,
before_func, varname, member, arglist);

This is the core part ofTranslateMemberCall() supplied byBefore-
Class . It first callsLookupClientData() and looks for a temporary variable
that is already declared. If it is not found, a variable declarationdecl is produced
by Make() and it is inserted into the translated program byInsertDecla-
ration() . InsertDeclaration() also records the temporary variable for
future reference.

7 Wrapper Function

A wrapper function is useful to implement language extensions such as concur-
rency. A wrapper function is generated by the compiler and it intercepts the call of
the original “wrapped” function. For example, the wrapper function may perform
synchronization before executing the original function. The original function is not
invoked unless the wrapper function explicitly calls it.

7.1 What the base-level program should be translated

We show a metaclassWrapperClass that generates wrapper functions. IfWrap-
perClass is specified, it generates wrapper functions for the member functions
of the class. And it translates the program so that the wrapper functions are invoked
instead of the wrapped member functions. For example, suppose that the program
is something like this:

metaclass WrapperClass Point;
class Point {
public:

void Move(int, int);
int x, y;

};

void Point::Move(int new_x, int new_y)
{

x = new_x; y = new_y;
}

void f()
{

Point p;

16

p.Move(3, 5); // call Move()
}

The compiler renamesMove() to be orig Move() and generates a wrapper
functionMove() for orig Move() . The translated program should be this:

class Point {
public:

void orig_Move(int, int);
int x, y;

public:
void Move(int, int);

};

void Point::orig_Move(int new_x, int new_y) // renamed
{

x = new_x; y = new_y;
}

void Point::Move(int p1, int p2) // generated wrapper
{

// should do something here in a real example
Move(p1, p2);

}

For simplicity, we make the wrapper function just invoke the wrapped function
Move() without doing anything else. In practice, it would do something neces-
sary.

7.2 Write a meta-level program

WrapperClass has to do only two things: (1) to rename member functions
and (2) to generate wrapper functions.WrapperClass overridesTranslate-
Class() for (1) and (2), andTranslateMemberFunction() for (1).

First, we showTranslateClass() . Its work is to translate the body of
a class declaration. It examines a member of the class and, if the member is a
function, it inserts the declaration of the wrapper function for that member.

Ptree* WrapperClass::TranslateBody(Environment* env, Ptree* body)
{

Member member;
int i = 0;
while(NthMember(i++, member))

if(member.IsPublic() && member.IsFunction()
&& !member.IsConstructor() && !member.IsDestructor()){

Member wrapper = member;

17

Ptree* org_name = NewMemberName(member.Name());
member.SetName(org_name);
ChangeMember(member);
MakeWrapper(wrapper, org_name);
AppendMember(wrapper, Class::Public);

}
}

Ptree* WrapperClass::NewMemberName(Ptree* name)
{

return Ptree::Make("org_%p", name);
}

In thewhile loop, we first examine whether thei -th member is apublic mem-
ber function. If so, we make a copy of that member and change the name of the
original one to beorg name. This change is reflected on the class declaration
by ChangeMember() . Then we modify the copy of that member so that is is a
wrapper function.MakeWrapper() performs this modification. The modified
copy is finally appended to the class declaration byAppendMember() .

MakeWrapper() substitutes an expression calling the original member for
the function body of the given member:

void WrapperClass::MakeWrapper(Member& member, Ptree* org_name)
{

Ptree* body = MakeWrapperBody(member, org_name);
member.SetFunctionBody(Ptree::Make("{ %p }\n", body));

}

Ptree* WrapperClass::MakeWrapperBody(Member& member, Ptree* org_name)
{

TypeInfo t;
Ptree* call_expr = Ptree::Make("%p(%p)", org_name, member.Arguments()) ;
member.Signature(t);
t.Dereference(); // get the return type
if((t.IsBuiltInType() & VoidType) || t.IsNoReturnType())

return Ptree::Make("%p;\n", call_expr);
else{

Ptree* rvar = Ptree::Make("_rvalue");
Ptree* rvar_decl = t.MakePtree(rvar);
return Ptree::Make("%p = %p;\n"

"return %p;\n", rvar_decl, call_expr, rvar);
}

}

For example,MakeWrapper() alters the function body of a given memberf()
and generates something like this:

18

int f(int i){
int _rvalue = org_f(i);
return _rvalue;

}

To implement this translation, we useMember andTypeInfo metaobjects.
First, we must callArguments() on aMember metaobject to construct an

expression for calling the original member.Arguments() returns the formal-
argument names of that member. If some of the names are omitted,Arguments()
implicitly inserts names. For example, if the original member is:

int f(int, int j) { reutrn j; }

Then the call ofArguments() on this member translates this member into:

int f(int _p0, int j) { reutrn j; }

And returns aPtree metaobject representing the argument list[p0 , j] .
To obtain the return type of the member, we callSignature() on theMem-

ber metaobject. This returns aTypeInfo metaobject representing the signautre
of the member. The return type of the member is the dereferenced type of that
signature, which is obtained by callingDereference() on the signature.

Once we obtain theTypeInfo metaobject representing the return type of the
member, we can construct the declaration of a variable of that type. If we call
MakePtree() on aTypeInfo metaobject, then it returns a declaration of the
variable given through the argument. Suppose that aTypeInfo metaobjectt is
the pointer type to integer. Then:

t.MakePtree(Ptree::Make("i"))

returns:

int* i

If MakePtree() is called without an argument, then it returns:

int*

If t is a function type, we can give a function name and get a parse tree representing
the function declaration. For example:

t.MakePtree(Ptree::Make("foo"))

19

returns if t is the function type that takes two integer arguments and returns a
pointer to a character:

char* foo(int, int)

If t is the pointer type to that function, the returned parse tree is:

char* (*foo)(int, int)

To finish the implementation ofWrapperClass , we also have to override
TranslateMemberFunction() . TranslateClass() that we defined above
renames member functions appearing in the class declaration, but it does not pro-
cess the (not inlined) implementation of those functions.

void WrapperClass::TranslateMemberFunction(Environment* env, Mem-
ber& member)
{

if(member.IsPublic() && !member.IsConstructor()
&& !member.IsDestructor())

member.SetName(NewMemberName(member.Name()));
}

TranslateMemberFunction() renames the given member function if it
is public but not a constructor or a destructor. Note thatChangeMember() is
not called in this member function unlikeTranslateClass() . The changes of
member is always reflected on the source code after this function finishes.

7.3 Subclass ofWrapperClass

The complete program ofWrapperClass is found inWrapperClass.h and
WrapperClass.mc , which is distributed together with the OpenC++ compiler.
Although the wrapper functions generated byWrapperClass do not perform
anything except calling the original member function, we can define a subclass of
WrapperClass to generate the wrapper functions that we need. (Note that, to
make the subclass effective, we also have to edit the metaclass declaration so that
the compiler selects the subclass forPoint .)

For example, suppose that we need a wrapper function that perform synchro-
nization before calling the original member function. This sort of wrapper function
is typical in concurrent programming. To implement this, we just define a subclass
SyncClass and overrideWrapperBody() :

Ptree* SyncClass::MakeWrapperBody(Member& member, Ptree* name)
{

Ptree* body = WrapperClass::MakeWrapperBody(member, name);
return Ptree::qMake("synchronize();\n ‘body‘");

}

20

This insertssynchronize(); before thereturn statement.
As we see above, carefully designed metaclasses can be reused as a super class

of another metaclass. Such metaclasses, that is, metaclass libraries, make it easier
to write other metaclasses. Indeed,MatrixClass in the matrix example should
be re-implemented so that other metaclasses such asComplexClass can share
the code for inlining withMatrixClass .

21

